УДК 537.311.1

ТЕХНИЧЕСКАЯ ФИЗИКА

Академик АН УССР Б. Г. ЛАЗАРЕВ, В. М. КУЗЬМЕНКО, А. И. СУДОВЦОВ, В. И. МЕЛЬНИКОВ

особенности электропроводности аморфных металлов

Конденсация паров висмута (1, 2), галлия (1, 2), бериллия (2), железа (2), иттербия (3) на подложки, охлаждаемые жидким гелием, приводит к образованию аморфных аллотропических модификаций этих метаплов. Интересной особенностью аморфных фаз, исследованной в настоящей работе, является отрицательный температурный коэффициент сопротивления. Методика получения аморфных метаплических пленок аналогична ранее опубликованной (6); она заключается в конденсации паров исследуемых метаплов на охлаждаемую жидким гелием подложку в сверхвысоком вакууме и исследовании электропроводности полученных таким образом слоев.

Аморфные фазы металлов, как известно, являются метастабильными и претерпевают переход в кристаллическое состояние, характерное для соответствующего металла в массивном состоянии, при отогреве до определенных температур $T_{\rm п}$, зависящих от рода металла и толщины слоя d (рис. 1). Представленные кривые определяют температурный интервал существования аморфных фаз. В этом интервале температурным коэффисопротивление характеризуется отрицательным температурным коэффициентом α (табл. 1) в отличие от соответствующих кристаллических фаз. Исследованные аморфные модификации обладают высоким удельным электросопротивлением $\rho_{\rm a}$, сравнимым со значениями $\rho_{\rm p}$ для соответствующих жидких металлов. В таблице приведены также удельные сопротивления $\rho_{\rm k}$ при комнатной температуре отожженных пленок и температуры отжига $T_{\rm отж}$. Эти температуры для всех металлов, кроме бериллия, выше дебаевской.

Из табл. 1 видно, что удельные сопротивления отожженных слоев иттербия и железа близки к значениям ом для массивных металлов. Удельное электросопротивление пленок бериллия гораздо выше его значения для массивного бериллия, что связано, по-видимому, с недостаточным отжигом из-за очень высокой температуры Дебая (1160° K) (7). Высокое значение удельного электросопротивления хорошо отожженных пленок висмута, повидимому, связано как с размерным эффектом, так и с уменьшением под-

Таблица 1

Ме- талл	d, A	ρ _а ·10°, ом·см, при T = 10° К	$ \rho_{K} \cdot 10^{6}, \\ \text{ом · cm, при} \\ T = 300^{\circ} \text{ K} $	Т _{отж} , °К	$ ho_{ m M} \cdot 10^6$, ом.см, при $T = 293^{\circ}$ К	$ \begin{array}{c c} \rho_{\mathbf{p}} \cdot 10^{\epsilon}, \\ \Pi \mu \mu \\ T = T_{\Pi \Pi} \end{array} $	α·104, град ⁻¹ , при T = 15° K
Yb Fe Bi Be	$ \begin{vmatrix} 70 - 3000 \\ 20 - 50 \\ 20 - 600 \\ 20 - 500 \end{vmatrix} $	210—240 120—140 130—150 200—230	30 11 230 80	460 650 350 300	27,0 9,7 106,5 3,6	139 (14) 127 (15)	$ \begin{array}{c c} -1,1\\ -4,1\\ -52,0\\ -32,0 \end{array} $

Примечания. 1) Верхний предел исследованных толщин d (кроме Ве) — критическая толщина, являющаяся пределом существования аморфной фазы (3-4). 2) Данные по $\rho_{\rm R}$ относятся к наиболее толстым из исследованных пленок: \sim 18 000 Å (Yb), \sim 600 Å (Fe), \sim 1300 Å (Bi), \sim 500 Å (Be). 3) Значения $\rho_{\rm R}$ и α для Ве соответствуют наиболее тонким слоям (\sim 20 \leftrightarrow 30 Å), поскольку с увеличением толщины в пленках Ве увеличивается концентрация кристаллической фазы (14).

вижности носителей тока в тонкой пленке по сравнению с подвижносты их в массивном состоянии (8).

Рис. 2 иллюстрирует типичное изменение электросопротивления с тем пературой для пленки иттербия толщиной ~ 200 Å. Аморфная фаз (рис. 2, 1) характеризуется отрицательным температурным коэффициентог сопротивления. После полного превращения аморфной фазы в кристалли ческую температурный коэффициент сопротивления становится положи тельным во всей области температур (рис. 2, 3). Если же в образце присут ствует смесь двух фаз — аморфной и кристаллической, что осуществляется при неполном отжиге, то зависимость удельного сопротивления от темпе

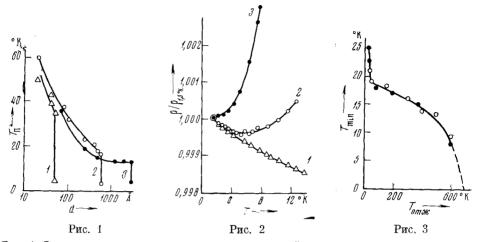


Рис. 1. Зависимость температуры перехода из аморфного в кристаллическое состояние от толщины для пленок железа (1), висмута (2) и иттербия (3). Вертикальные участки кривых соответствуют критической толщине аморфных фаз этих металлов ($^{3-5}$)

Рис. 2. Зависимость величины ρ / $\rho_{1,5^{\circ}\mathrm{K}}$ от температуры для слоя иттербия толщиной \sim 200 Å (ρ — удельное сопротивление пленки при температуре T, $\rho_{1,5^{\circ}\mathrm{K}}$ — при 1,5° K): I — аморфная фаза, 2 — смесь аморфной и кристаллической фаз (после отжига пленки до 22° K), 3 — кристаллическая фаза (после отжига пленки до 50° K) Рис. 3. Температура минимума слоя железа толщиной \sim 50 Å в зависимости от температуры его отжига

ратуры имеет минимум электросопротивления. На рис. 2, 2 показан такой минимум для слоя иттербия, отогретого до температуры $\sim 22^{\circ}$ K, когда частично уже произошел переход из аморфного в кристаллическое состояние. При дальнейшем отогреве и величина, и температура минимума T_{\min} уменьшаются по мере превращения аморфной фазы в кристаллическую.

Аналогично ведут себя слои железа. На рис. З представлено изменение T_{\min} после отжига слоя железа толщиной ~ 50 Å. Резкое уменьшение T_{\min} после отжига пленок до $30-40^{\circ}$ K связано с переходом основной части аморфного железа в кристаллическое в этой области температур. Однако, по-видимому, остатки аморфной фазы железа в тонких пленках сохраняются при отжиге до значительных температур ($>600^{\circ}$ K), о чем свидетельствует наличие минимума сопротивления у отожженных до этой температуры тонких слоев железа. Экстраполяция кривой $T_{\min}(T_{\text{отж}})$ на ось абсцисс (рис. 3) дает температуру, при отжиге до которой исчезают остатки аморфной фазы. Эта температура уменьшается по мере утолщения пленок и для слоя железа толщиной ~ 600 Å составляет уже $\sim 550^{\circ}$ K.

В наших предыдущих работах (⁹, ¹⁰) был обнаружен и исслелован минимум электросопротивления ряда металлов (Lu, Tu, Fe, Cu, Ag), полученных конденсацией на подложки, охлаждаемые жидким гелием. Основные особенности этого минимума, как было показано, состоят в следующем: 1) рост температуры минимума с уменьшением толщины слоя; 2) умень-

мение температуры минимума по мере отжига слоя, причем тем более сильное, чем толще слой; 3) исчезновение минимума сопротивления при высокотемпературном отжиге и его отсутствие в тонких слоях соответствующих металлов, полученных при конденсации на горячую подложку; 4) отсутствие влияния на минимум магнитного поля. Предполагается, что эти особенности находятся в полном соответствии с результатами настоящего сообщения: во всех случаях проявления минимума электросопротивления в слоях металлов, полученных низкотемпературной конденсацией, он связан с наличием какого-то количества аморфной фазы в слое.

Как было показано (11), пленки бериллия, сконденсированные на подложку, охлаждаемую жидким гелием, состоят из смеси аморфной и кристаллической фаз, начиная с самой малой толщины (~20 Å). В соответствии с результатами настоящей работы они также обладают явно выраженным минимумом сопротивления. Возможно, подобными же обстоятельствами объясняется минимум сопротивления в закаленных неравновесных слоях сплавов Fe — P — C (12) и Ni — Pd — P (13), лишенных кристаллической

структуры (с точностью до рентгеноструктурного разрешения).

Таким образом, не только у неравновесных слоев металлов, полученных конденсацией пара на холодную подложку, но и у некоторых сплавов, резко закаленных из жидкого состояния, наблюдаются одинаковые особенности в ходе электросопротивления от температуры. При полной аморфизации металла наблюдается отрицательный коэффициент сопротивления, при наличии смеси аморфной и кристаллической фаз — минимум сопротивления. Природа отрицательного температурього коэффициента сопротивления у аморфных металлических слоев остается невыясненной. Один из возможных механизмов — полупроводниковый характер проводимости таких слоев с крайне малой энергией активации. В этом предположении оценка энергий активации (из кривых вида рис. 2, 1) дает следующие значения: для Yb (при $1.5-3^{\circ}$ K) $\sim 10^{-7}$ эв; для Fe (при $1.5-3^{\circ}$ K) $\sim 6\cdot10^{-7}$ эв; для Ві (при $10-15^{\circ}$ K) $\sim 5\cdot10^{-5}$ эв. Интересно заметить, что в аморфном висмуте с понижением температуры полупроводниковый ход сопротивления сменяется сверхпроводимостью — пока это единственный случай такого поведения для чистых металлов-сверхпроводников.

Физико-технический институт Академии наук УССР Харьков Поступило 21 II 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ W. Buckel, Zs. Phys., 138, № 2, 136 (1954). ² Satoru Fujime, Japan J. Appl. Phys., 5, 59, 764, 1029 (1966). ³ Б. Г. Лазарев, В. М. Кузьменко и др., ДАН, 184, № 3, 587 (1969). ⁴ Б. Г. Лазарев, В. М. Кузьменко и др., ДАН, 194, № 2, 302 (1970). ⁵ Б. Г. Лазарев, В. М. Кузьменко и др., Письма ЖЭТФ, 10, 261 (1969). ⁵ Б. Г. Лазарев, Е. Е. Семененко, А. И. Судовцов, ЖЭТФ, 40, 105 (1961). ⁵ В. Г. Лазарев, Е. Е. Семененко, А. И. Судовцов, ЖЭТФ, 40, 105 (1961). ⁵ В. Г. Лазарев, В. М. Кузьменко и др., ЖЭТФ, 60, 669 (1971). ⁵ Б. Г. Лазарев, В. М. Кузьменко, А. И. Судовцов, ДАН, 184, 815 (1969). ¹¹ Б. Г. Лазарев, В. М. Кузьменко, А. И. Судовцов, ДАН, 184, 815 (1969). ¹¹ Б. Г. Лазарев, В. М. Кузьменко и др., Физ. мет. и металловед., 32, 52 (1971). ¹² S. С. Н. Lin, J. Appl. Phys., 40, 2173 (1969). ¹³ Р. Маітгеріете, J. Аррl. Phys., 41, 498 (1970). ¹⁴ R. W. Powell, Phil. Mag., 44, 772 (1953). ¹⁵ Физический энциклопедический словарь, 1, М., 1960, стр. 278.