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Abstract In this paper, we study such polyadic analog of an identity of a group as
m-neutral sequence. In particular, we prove that all Post’s equivalence classes of the
free covering group of any n-ary group [where n = k(m − 1) + 1 and k ≥ 1] defined
by m-neutral sequences form the (k + 1)-ary group, which is isomorphic to the n-ary
subgroup of all identities of the n-ary group in the case when m = 2.
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1 Introduction

One of the main results of the paper [1] states that the set of all identities of any
n-ary group (in the case when thus set is not empty) is a characteristic n-ary subgroup
contained in the center of the n-ary group. In the binary case (when n = 2) it is trivial.
But in the case when n > 2 this statement is more informative, since in this case there
can bemore than one identity in the n-ary group.Moreover, there are non-one-element
n-ary groups inwhich every element is identity. Different informations on the structure
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of the n-ary subgroup of all identities of an n-ary group can be found in [2]. Note only
that in the case when n = 3 the following conditions hold:

(1) If a finite ternary group has more than one identity, then the orders of the center,
of the ternary subgroup of all identities of this ternary group, and of this ternary
group itself are even;

(2) If a finite ternary group has more than two identities, then the orders of the center,
of the ternary subgroup of all identities of this ternary group, and of this ternary
group itself are divisible by 4.

Conditions (1) and (2) are special cases of the following result in [3]:

(3) If k ≥ 1, p is a prime and a finite (p+1)-ary group<A, [ ]> has more than pk−1

identities, then the orders of the center, of the (p+1)-ary subgroup of all identities
of this (p+ 1)-ary group, and of this (p+ 1)-ary group itself are divisible by pk .

In this paper, we continue to study the polyadic analogs of an identity of a group.
In particular, we show that the main result in [1] is a corollary of the main result of
this paper.

2 Preliminaries

All information of this section can be found in [2,4,5].
Recall that a universal algebra < A, [ ]> with one n-ary operation [ ] : An → A

(n ≥ 2) is called an n-ary group (Dörnte [6]) if [ ] is associative, i.e.,

[[a1 . . . an]an+1 . . . a2n−1] = [a1 . . . ai [ai+1 . . . ai+n]ai+n+1 . . . a2n−1]

for all i = 1, 2, . . . , n − 1 and all a1, . . . , a2n−1 ∈ A, and the equation
[a1 . . . ai−1xiai+1 . . . an] = b can be uniquely solved in A for every i = 1, 2, . . . , n
and all a1, . . . , ai−1, ai+1, . . . , an, b ∈ A.

It is evident that every group is an n-ary group, where n = 2.

Remark 2.1 In [7], Post noted that the unique solvability of the equation in Dörnte’s
definition can be replaced by the solvability of this equation. Other different definitions
of an n-ary group can be found in [2]. Note only that by definition of Skiba and Tjutin
[8], a universal algebra < A, [ ] > with one n-ary operation [ ] : An → A (n ≥ 2)
is called an n-ary group if [ ] is associative and either two equations [x a . . . a

︸ ︷︷ ︸

n−1

] = b

and [a . . . a
︸ ︷︷ ︸

n−1

x] = b are solved for any a, b ∈ A or (in the case when n ≥ 3) only one

equation [a . . . a
︸ ︷︷ ︸

i−1

x a . . . a
︸ ︷︷ ︸

n−i

] = b is solved for any a, b ∈ A.

Remark 2.2 If k ≥ 1, then

[[. . . [[a1 . . . an]an+1 . . . a2n−1] . . .]a(k−1)(n−1)+2 . . . ak(n−1)+1] = [a1 . . . ak(n−1)+1].
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Since an n-ary operation [ ] is associative, all inner operation in the left part of this
equality can be placed by different ways.

Recall that an element e of an n-ary group < A, [ ] > is called an identity of
< A, [ ]>(Dörnte [6]) if

[x e . . . e
︸ ︷︷ ︸

n−1

] = [ex e . . . e
︸ ︷︷ ︸

n−2

] = · · · = [e . . . e
︸ ︷︷ ︸

n−2

xe] = [e . . . e
︸ ︷︷ ︸

n−1

x] = x

for every x ∈ A and i = 1, 2, . . . , n. This definition is an n-ary generalization of the
definition of the identity of a group A as the element e ∈ A such that ex = xe = x
for any x ∈ A.

Onemore n-ary generalization of an identity of a group is a neutral sequence. Recall
that a sequence e1 . . . es(n−1) of the elements of an n-ary group<A, [ ]>, where s ≥ 1,
is said to be neutral (Post [7]) if [e1 . . . es(n−1)x] = [xe1 . . . es(n−1)] = x for every
x ∈ A.

Recall also that a sequence β of the elements of an n-ary group <A, [ ]> is said to
be inverse for a sequence α of the elements of this group (Post [7]) if the sequences
αβ and βα are neutral.

Remark 2.3 The following statements can be proved:

(1) If e is an element of an n-ary group<A, [ ]> such that [x e . . . e
︸ ︷︷ ︸

n−1

] = [ex e . . . e
︸ ︷︷ ︸

n−2

] =

x for every x ∈ A, then e is an identity of A;
(2) If e1 . . . es(n−1) is a sequence of the elements of an n-ary group <A, [ ]> such

that for any x ∈ A either [e1 . . . es(n−1)x] = x or [xe1 . . . es(n−1)] = x , then
e1 . . . es(n−1) is neutral;

(3) If α and β are the sequences of an n-ary group <A, [ ]> such that one of the
sequences αβ or βα is neutral, then the sequence β is inverse for α.

Let <A, [ ]> be an n-ary group, FA a free semigroup over an alphabet A and θA
a Post’s equivalence relation [7] defined on FA by the rule (α, β) ∈ θA iff there are
the sequences γ, δ ∈ FA such that [γαδ] = [γβδ]. It is easy to show that A is a
congruence on the semigroup FA and the semigroup A∗ = FA/θA is a group which
is said to be a free covering group [or abstract containing group (Post)] for the n-ary
group <A, [ ]>. The class θA(ε) is an identity of A, where ε is any neutral sequence
of A, and θA(β) is an inverse sequence for θA(α), where β is any inverse sequence for
a sequence α.

In the future, we use the symbol θ to denote θA.
For every i = 1, . . . , n − 1, we put

A(i) = {θ(α) ∈ A∗|l(α) = s(n − 1) + i, s ≥ 0},

where θ(α) is a class of the congruence θ containing a sequence α, l(α) is the length
of the sequence α.

It is evident that A(i) = {θ(α) ∈ A∗|l(α) = i}. In particular, A′ = {θ(a)|a ∈ A}.

123

Author's personal copy



498 A. M. Gal’mak, V. A. Kovaleva

If we fix the elements a1, . . . , ai−1 ∈ A, then

A(i) = {θ(aa1 . . . ai−1)|a ∈ A} = {θ(a1 . . . ai−1a)|a ∈ A}.

The symbol A0 is used to denote the set A(n−1).

Remark 2.4 It is easy to prove that in the case when n = k(m − 1) + 1, where n ≥ 3
and m ≥ 2, the set A(m−1) is a (k + 1)-ary group with (k + 1)-ary operation

[θ(α1)θ(α2) . . . θ(αk+1)]k+1 = θ(α1α2 . . . αk+1).

If m = 2, then k = n − 1 and we get the n-ary operation

[θ(a1)θ(a2) . . . θ(an)]n = θ(a1a2 . . . an) = θ([a1a2 . . . an]), a1, a2, . . . , an ∈ A.

In this case, the map a → θ(a) is an isomorphism of an n-ary group <A, [ ]> on an
n-ary group < A′, [ ]n >.

If m = n, then k = 1 and we get the binary operation

[θ(a1a2 . . . an−1)θ(b1b2 . . . bn−1)]2
= θ(a1a2 . . . an−1b1b2 . . . bn−1) = θ([a1a2 . . . an−1b1]b2 . . . bn−1),

where a1, a2, . . . , an−1, b1, b2, . . . , bn−1 ∈ A. The group < A(n−1) = A0, [ ]2 > is
called an associated group for an n-ary group <A, [ ]> (Post) and denoted by A0.

Recall that the center of an n-ary group <A, [ ]> [5] is the set

Z(A) = {z ∈ A|(zx, xz) ∈ θ for all x ∈ A}.

The center of an n-ary group <A, [ ]> can be defined as follows:

Z(A) = {z ∈ A|[zx1x2 . . . xn−1] = [x1zx2 . . . xn−1] for all x1, . . . , xn−1 ∈ A}.

Recall also that an n-ary subgroup < B, [ ]>of an n-ary group <A, [ ]> is said to
be invariant in <A, [ ]> (Post [7]) if [αBγ ] = B for any sequence α of the elements
of A, where γ is any inverse sequence for α (see also [2,4,5]).

The center of any n-ary group is an example of an invariant n-ary subgroup.
Finally, note that the invariance is preserved under all isomorphisms of the n-ary

groups.

Remark 2.5 If < B, [ ]> is an n-ary subgroup of an n-ary group < A, [ ] > such that
[αBγ ] ⊆ B for any sequence α of the elements of A, where γ is any inverse sequence
for α, then B is invariant in A.
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3 m-Neutral Sequences and Their Properties

The following definition combines the concepts of a neutral sequence and an identity
of an n-ary group.

Definition 3.1 (see [4]). Let <A, [ ]> be an n-ary group, where n = k(m − 1) + 1
and k ≥ 1. A sequence α = e1 . . . et (n−1)+m−1 of the elements of A, where t ≥ 0, is
said to be m-neutral, if [α . . . α

︸ ︷︷ ︸

j−1

x α . . . α
︸ ︷︷ ︸

k− j+1

] = x for every x ∈ A and j = 1, . . . , k + 1.

It is evident that the n-neutral sequences of the elements of an n-ary group are
the neutral sequences of this group. Moreover, every identity of an n-ary group is a
2-neutral sequence and every 2-neutral sequence e1 . . . et (n−1)+1 is either an identity
(in the case when t = 0) or identified with identity [e1 . . . et (n−1)+1] (in the case when
t ≥ 1).

The following proposition can be proved by the simple calculations.

Proposition 3.2 Let < A, [ ] > be an n-ary group, where n = k(m − 1) + 1. A
sequence α of the elements of A is m-neutral if and only if the following conditions
hold:

(1) For any x ∈ A, the sequences αx and xα are equivalent, that is, θ(α)θ(x) =
θ(x)θ(α);

(2) The sequence [α . . . α
︸ ︷︷ ︸

k

] is neutral.

Proposition 3.3 Let α be an m-neutral sequence of an n-ary group < A,[ ]>, where
n = k(m − 1) + 1, γ any inverse sequence for α and β any sequence from A. The
following hold:

(1) The sequences αβ and βα are equivalent;
(2) The sequences γβ and βγ are equivalent;
(3) θ(α . . . α

︸ ︷︷ ︸

j−1

β α . . . α
︸ ︷︷ ︸

k− j+1

) = θ(β) and θ(γ . . . γ
︸ ︷︷ ︸

j−1

β γ . . . γ
︸ ︷︷ ︸

k− j+1

) = θ(β) for any j =

1, . . . , k + 1.

Proof (1) This assertion directly follows from Proposition 3.2.
(2) Let δ be any inverse sequence for the sequence β. By Claim (1), θ(α)θ(δ) =

θ(δ)θ(α) and so

(θ(α)θ(δ))−1 = (θ(δ)θ(α))−1,

(θ(δ))−1(θ(α)−1) = (θ(α))−1(θ(δ))−1,

θ(β)θ(γ ) = θ(γ )θ(β),

θ(βγ ) = θ(γβ).

(3) By Claim (1), we have

θ(α . . . α
︸ ︷︷ ︸

j−1

β α . . . α
︸ ︷︷ ︸

k− j+1

) = θ(α . . . α
︸ ︷︷ ︸

k

)θ(β).
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Since α . . . α
︸ ︷︷ ︸

k

is neutral by Proposition 3.2(2), θ(α . . . α
︸ ︷︷ ︸

j−1

β α . . . α
︸ ︷︷ ︸

k− j+1

) = θ(β). Hence

θ(γ . . . γ
︸ ︷︷ ︸

j−1

)θ(α . . . α
︸ ︷︷ ︸

j−1

β α . . . α
︸ ︷︷ ︸

k− j+1

)θ(γ . . . γ
︸ ︷︷ ︸

k− j+1

= θ(γ . . . γ
︸ ︷︷ ︸

j−1

)θ(β)θ(γ . . . γ
︸ ︷︷ ︸

k− j+1

,

θ(γ . . . γ
︸ ︷︷ ︸

j−1

α . . . α
︸ ︷︷ ︸

j−1

β α . . . α
︸ ︷︷ ︸

k− j+1

γ . . . γ
︸ ︷︷ ︸

k− j+1

) = θ(γ . . . γ
︸ ︷︷ ︸

j−1

β γ . . . γ
︸ ︷︷ ︸

k− j+1

).

Since γ is an inverse sequence for α, it follows that

θ(γ . . . γ
︸ ︷︷ ︸

j−1

β γ . . . γ
︸ ︷︷ ︸

k− j+1

) = θ(β).

The proposition is proved.
�	

From Proposition 3.3(3) we get

Corollary 3.4 If α is an m-neutral sequence of an n-ary group < A, [ ] >, where
n = k(m − 1) + 1, γ is any inverse sequence for α, then [γ . . . γ

︸ ︷︷ ︸

j−1

x γ . . . γ
︸ ︷︷ ︸

k− j+1

] = x for

any x ∈ A and j = 1, . . . , k + 1.

Proposition 3.5 Let r ≥ 1, k ≥ 1, s = kr,m = r(l − 1) + 1, n = k(m − 1) + 1 =
s(l−1)+1, β be an l-neutral sequence of an n-ary group<A, [ ]>. Then α = β . . . β

︸ ︷︷ ︸

r
is an m-neutral sequence of < A, [ ]>.

Proof Since β is an l-neutral sequence of < A, [ ] >,βx and xβ are equivalent in
< A, [ ]> for any x ∈ A in view of Proposition 3.2(1). Then the sequences β . . . β

︸ ︷︷ ︸

r

x

and x β . . . β
︸ ︷︷ ︸

r

are also equivalent, that is, αx and xα are equivalent. Moreover, by

Proposition 3.2(2),

β . . . β
︸ ︷︷ ︸

s

= β . . . β
︸ ︷︷ ︸

kr

= β . . . β
︸ ︷︷ ︸

r

. . . β . . . β
︸ ︷︷ ︸

r
︸ ︷︷ ︸

k

= α . . . α
︸ ︷︷ ︸

k

is neutral in < A, [ ] >. Thus α is m-neutral in < A, [ ] > by Proposition 3.2. The
proposition is proved. �	
Proposition 3.6 For any m-neutral sequences α1, α2, . . . , αk+1 of an n-ary group
< A, [ ] >, where n = k(m − 1) + 1, the sequence α = α1α2 . . . αk+1 is also
m-neutral.
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Proof Let l(α j ) = t j (n−1)+m−1 be the length of the sequenceα j , j = 1, . . . , k+1.
Then the length of the sequence α is l(α) = t (n − 1) +m − 1, where t = (t1 + . . . +
tk+1 + 1)(n − 1) + m − 1. Moreover, by Proposition 3.3(1) and the definition of an
m-neutral sequence, we get

[α . . . α
︸ ︷︷ ︸

j−1

x α . . . α
︸ ︷︷ ︸

k− j+1

]

= [α1α2 . . . αk+1 . . . α1α2 . . . αk+1
︸ ︷︷ ︸

j−1

x α1α2 . . . αk+1 . . . α1α2 . . . αk+1
︸ ︷︷ ︸

k− j+1

]

= [αk+1 . . . αk+1
︸ ︷︷ ︸

j−1

. . . [α2 . . . α2
︸ ︷︷ ︸

j−1

[α1 . . . α1
︸ ︷︷ ︸

j−1

x α1 . . . α1
︸ ︷︷ ︸

k− j+1

] α2 . . . α2
︸ ︷︷ ︸

k− j+1

] . . . αk+1 . . . αk+1
︸ ︷︷ ︸

k− j+1

]

= [αk+1 . . . αk+1
︸ ︷︷ ︸

j−1

. . . [α2 . . . α2
︸ ︷︷ ︸

j−1

x α2 . . . α2
︸ ︷︷ ︸

k− j+1

] . . . αk+1 . . . αk+1
︸ ︷︷ ︸

k− j+1

]

. . . = [αk+1 . . . αk+1
︸ ︷︷ ︸

j−1

x αk+1 . . . αk+1
︸ ︷︷ ︸

k− j+1

] = x .

Hence α is neutral in < A, [ ]>. The proposition is proved. �	
Remark 3.7 If in Proposition 3.6 we put m = 2 and m = n, then we get respectively
the following known facts:

(1) The set E(A) of all identities of an n-ary group < A, [ ]> is closed under n-ary
operation [ ], that is, <E(A), [ ]> is an n-ary subsemigroup of < A, [ ]>;

(2) If α and β are the neutral sequences of an n-ary group < A, [ ] >, then the
sequence αβ is also neutral in < A, [ ]>.

Denote by N (A,m) the set of allm-neutral sequences of an n-ary group< A, [ ]>.
It is evident that E(A) ⊆ N (A, 2) and N (A, n) is a set of all neutral sequences of
< A, [ ]>. The equality E(A) = N (A, 2) is true only in the case when there are no
identities in < A, [ ] >. Moreover, in the case when E(A) is not empty, for every
identity e of A, e1 . . . et (n−1)+1 ∈ N (A, 2), where e1 . . . et (n−1)+1 is any equivalent
sequence of length t (n − 1) + 1 for e, and e1 . . . et (n−1)+1 /∈ E(A) for t ≥ 1.

In a (k + 1)-ary group < A(m−1), [ ]k+1>, select

N (A(m−1)) = {θ(α)|α ∈ N (A,m)}.

It is evident that N (A′) = E(A′). Since every n-ary group contains the neutral
sequences, N (A0) = N (A(n−1)) is not empty. Furthermore, since any two neutral
sequences are equivalent in the sence of Post, N (A0) consists of the single class θ(α),
where α is any neutral sequence, and θ(α) is an identity of the free covering group A∗
(that is, N (A0) = E(A0)).

If m 
= n, then N (A(m−1)) may be empty. In particular, N (A′) may be empty.
Since for every element θ(α) of the non-empty set N (A(m−1)) we can choose a

sequence α of length m − 1,

N (A(m−1)) = {θ(α)|α ∈ N (A,m), l(α) = m − 1}.
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In particular, N (A′) = {θ(a)|a ∈ E(A)}.
From Proposition 3.3(3) we get also the following

Corollary 3.8 Let < A, [ ] >be an n-ary group, n = k(m − 1) + 1,U ∈
N (A(m−1)),V ∈ A(m−1). Then [U . . .U

︸ ︷︷ ︸

j−1

V U . . .U
︸ ︷︷ ︸

k− j+1

]k+1 = V and [U−1 . . .U−1
︸ ︷︷ ︸

j−1

V

U−1 . . .U−1
︸ ︷︷ ︸

k− j+1

]k+1 = V for all j = 1, . . . , k + 1, where U−1 is an inverse element for

U in the free covering group A∗.

From the first equality of Corollary 3.8, we get the result about the connection
between the m-neutral sequences of an n-ary group < A, [ ]>and the identities of a
(k + 1)-ary group < A(m−1), [ ]k+1>.

Proposition 3.9 If α is an m-neutral sequence of an n-ary group < A, [ ] >, where
n = k(m − 1) + 1, then the class θ(α) is an identity of a (k + 1)-ary group
< A(m−1), [ ]k+1> and N (A(m−1)) ⊆ E(A(m−1)).

In general case, the converse inclusion E(A(m−1)) ⊆ N (A(m−1)) is false (see
Example 5.3 below).

Proposition 3.10 Let < A, [ ] >be an n-ary group, n = k(m − 1) + 1,U ∈
N (A(m−1)), V ∈ A(m−1) and φ be an automorphism of an (k + 1)-ary group
< A(m−1), [ ]k+1>. Then [Uφ . . .Uφ

︸ ︷︷ ︸

j−1

V Uφ . . .Uφ
︸ ︷︷ ︸

k− j+1

]k+1 = V for all j = 1, . . . , k + 1

and Nφ(A(m−1)) ⊆ E(A(m−1)).

Proof Since V φ−1 ∈ A(m−1), it follows in view of Corollary 3.8 that

[U . . .U
︸ ︷︷ ︸

j−1

V φ−1
U . . .U
︸ ︷︷ ︸

k− j+1

]k+1 = V φ−1
.

Hence

([U . . .U
︸ ︷︷ ︸

j−1

V φ−1
U . . .U
︸ ︷︷ ︸

k− j+1

]k+1)
φ = (V φ−1

)φ,

[Uφ . . .Uφ
︸ ︷︷ ︸

j−1

(V φ−1
)φ Uφ . . .Uφ

︸ ︷︷ ︸

k− j+1

]k+1 = V,

[Uφ . . .Uφ
︸ ︷︷ ︸

j−1

V Uφ . . .Uφ
︸ ︷︷ ︸

k− j+1

]k+1 = V .

The last equalitymeans thatUφ is an identity of a (k+1)-ary group< A(m−1), [ ]k+1>.
Hence Nφ(A(m−1)) ⊆ E(A(m−1)) (it follows also from Proposition 3.9). The propo-
sition is proved. �	
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Proposition 3.11 Let α be anm-neutral sequence of an n-ary group< A, [ ]>,where
n = k(m − 1) + 1 and Z(A) is not empty. If φ is an automorphism of a (k + 1)-ary
group < A(m−1), [ ]k+1>and U = θ(α),Uφ = θ(δ), then δ is an m-neutral sequence
of < A, [ ]>.

Proof Let x be any element of A and c1, . . . , cm−2 be fixed elements of Z(A). Let
V = θ(xc1 . . . cm−2). SinceU = θ(α) ∈ N (A(m−1)) and V ∈ A(m−1), by Proposition
3.10,

[Uφ . . .Uφ
︸ ︷︷ ︸

j−1

V Uφ . . .Uφ
︸ ︷︷ ︸

k− j+1

]k+1 = V .

Then, in view of c1, . . . , cm−2 ∈ Z(A), we get

[θ(δ) . . . θ(δ)
︸ ︷︷ ︸

j−1

θ(xc1 . . . cm−2) θ(δ) . . . θ(δ)
︸ ︷︷ ︸

k− j+1

]k+1 = θ(xc1 . . . cm−2),

θ(δ . . . δ
︸ ︷︷ ︸

j−1

xc1 . . . cm−2 δ . . . δ
︸ ︷︷ ︸

k− j+1

) = θ(xc1 . . . cm−2),

θ(δ . . . δ
︸ ︷︷ ︸

j−1

x δ . . . δ
︸ ︷︷ ︸

k− j+1

c1 . . . cm−2) = θ(xc1 . . . cm−2),

θ(δ . . . δ
︸ ︷︷ ︸

j−1

x δ . . . δ
︸ ︷︷ ︸

k− j+1

)θ(c1 . . . cm−2) = θ(x)θ(c1 . . . cm−2),

θ(δ . . . δ
︸ ︷︷ ︸

j−1

x δ . . . δ
︸ ︷︷ ︸

k− j+1

) = θ(x),

θ([δ . . . δ
︸ ︷︷ ︸

j−1

x δ . . . δ
︸ ︷︷ ︸

k− j+1

]) = θ(x),

[δ . . . δ
︸ ︷︷ ︸

j−1

x δ . . . δ
︸ ︷︷ ︸

k− j+1

] = x .

Hence δ is an m-neutral sequence of < A, [ ]>. The proposition is proved. �	

4 Main Results

In view of Proposition 3.9, N (A(m−1)) ⊆ E(A(m−1)) for any n-ary group < A, [ ]>,
where n = k(m − 1) + 1. The following theorem shows that in the case when Z(A)

is not empty the converse inclusion is true.

Theorem 4.1 Let<A, [ ]>be an n-ary group,where n = k(m−1)+1 and N (A(m−1))

is not empty. Then:

(1) <N (A(m−1)), [ ]k+1> is an invariant (k+1)-ary subgroup of< A(m−1), [ ]k+1>

and N (A(m−1)) ⊆ Z(A(m−1));
(2) If the center Z(A) is not empty, then<N (A(m−1)), [ ]k+1> is a characteristic sub-

group of< A(m−1), [ ]k+1> and<N (A(m−1)), [ ]k+1>=<E(A(m−1)), [ ]k+1>.
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Proof (1) Let θ(α1), θ(α2), . . . , θ(αk+1) be any elements of N (A(m−1)). Put α =
α1α2 . . . αk+1 and U = [θ(α1)θ(α2) . . . θ(αk+1)]k+1. Since

[θ(α1)θ(α2) . . . θ(αk+1)]k+1 = θ(α1α2 . . . αk+1) = θ(α),

it follows that U = θ(α). Moreover, since α1, α2, . . . , αk+1 are m-neutral, α is also
m-neutral by Proposition 3.6. Therefore U = θ(α) ∈ N (A(m−1)). Hence N (A(m−1))

is closed under (k + 1)-ary operation [ ]k+1.
Now we show that the equation

[θ(α1) . . . θ(αi−1)xθ(αi+1) . . . θ(αk+1)]k+1 = θ(β)

is solved in N (A(m−1)) for every i = 1, . . . , k+1,where θ(α1), . . . , θ(αi−1), θ(αi+1),

. . . , θ(αk+1), θ(β) ∈ N (A(m−1)). Let W = θ(γi−1 . . . γ1βγk+1 . . . γi+1), where
γ1, . . . , γi−1, γi+1, . . . , γk+1 are the inverse sequences for the sequencesα1, . . . , αi−1,

αi+1, . . . , αk+1, respectively. It is evident that W is a solution of our equation. Let
τ = γi−1 . . . γ1βγk+1 . . . γi+1. In view of Proposition 3.3(2), m-neutrality of β and
Corollary 3.4, we get

[τ . . . τ
︸ ︷︷ ︸

j−1

x τ . . . τ
︸ ︷︷ ︸

k− j+1

]

= [γi−1 . . . γ1βγk+1 . . . γi+1 . . . γi−1 . . . γ1βγk+1 . . . γi+1
︸ ︷︷ ︸

j−1

x

× γi−1 . . . γ1βγk+1 . . . γi+1 . . . γi−1 . . . γ1βγk+1 . . . γi+1
︸ ︷︷ ︸

k− j+1

]

= [γk+1 . . . γk+1
︸ ︷︷ ︸

j−1

. . . [γ2 . . . γ2
︸ ︷︷ ︸

j−1

[γ1 . . . γ1
︸ ︷︷ ︸

j−1

[β . . . β
︸ ︷︷ ︸

j−1

x β . . . β
︸ ︷︷ ︸

k− j+1

] γ1 . . . γ1
︸ ︷︷ ︸

k− j+1

] γ2 . . . γ2
︸ ︷︷ ︸

k− j+1

] . . . γk+1 . . . γk+1
︸ ︷︷ ︸

k− j+1

]

= [γk+1 . . . γk+1
︸ ︷︷ ︸

j−1

. . . [γ2 . . . γ2
︸ ︷︷ ︸

j−1

[γ1 . . . γ1
︸ ︷︷ ︸

j−1

x γ1 . . . γ1
︸ ︷︷ ︸

k− j+1

] γ2 . . . γ2
︸ ︷︷ ︸

k− j+1

] . . . γk+1 . . . γk+1
︸ ︷︷ ︸

k− j+1

]

= [γk+1 . . . γk+1
︸ ︷︷ ︸

j−1

. . . [γ2 . . . γ2
︸ ︷︷ ︸

j−1

x γ2 . . . γ2
︸ ︷︷ ︸

k− j+1

] . . . γk+1 . . . γk+1
︸ ︷︷ ︸

k− j+1

]

. . . . . . . . .

= [γk+1 . . . γk+1
︸ ︷︷ ︸

j−1

x γk+1 . . . γk+1
︸ ︷︷ ︸

k− j+1

] = x .

Hence τ is m-neutral, W = θ(τ ) ∈ N (A(m−1)) and the universal algebra
<N (A(m−1)), [ ]k+1 > is a (k + 1)-ary subgroup of a (k + 1)-ary group
< A(m−1), [ ]k+1>.

Let U = θ(α1) . . . θ(αi ) be any sequence of < A(m−1), [ ]k+1 >, V =
θ(β1) . . . θ(β j ) an inverse sequence forU in< A(m−1), [ ]k+1> and θ(α) any element
of<N (A(m−1)), [ ]k+1>. Then, in view of definition of a (k+1)-ary operation [ ]k+1,
Proposition 3.3(1) and m-neutrality of the sequence UV , we have

[Uθ(α)V ]k+1 = [θ(α1) . . . θ(αi )θ(α)θ(β1) . . . θ(β j )]k+1

= θ(α1) . . . θ(αi )θ(α)θ(β1) . . . θ(β j )

= θ(α)θ(α1) . . . θ(αi )θ(β1) . . . θ(β j )

123

Author's personal copy



On Identities and m-Neutral Sequences of n-Ary Groups 505

= [θ(α)θ(α1) . . . θ(αi )θ(β1) . . . θ(β j )]k+1

= [θ(α)UV ]k+1 = θ(α) ∈ N (Am−1),

hence [UN (A(m−1))V ]k+1 ⊆ N (A(m−1)). Therefore, < N (A(m−1)), [ ]k+1 > is
invariant in < A(m−1), [ ]k+1>by Remark 2.5.

In view of Proposition 3.3(1),

[θ(α)θ(β1) . . . θ(βk)]k+1 = θ(αβ1 . . . βk) = θ(β1αβ2 . . . βk)

= [θ(β1)θ(α)θ(β2) . . . θ(βk)]k+1

for any θ(α) ∈ N (A(m−1)), θ(β1), . . . , θ(βk) ∈ A(m−1). Therefore, θ(α) ∈ Z(Am−1)

and so N (A(m−1)) ⊆ Z(A(m−1)).
(2) If U ∈ N (A(m−1)), then, by Proposition 3.11, Uφ ∈ N (A(m−1)) for any

automorphism φ of < A(m−1), [ ]k+1 >. Hence Nφ(A(m−1)) ⊆ N (A(m−1)). In par-
ticular, Nφ−1

(A(m−1)) ⊆ N(A(m−1)). Therefore, (Nφ−1
(A(m−1)))φ ⊆ Nφ(A(m−1))

and hence N (A(m−1)) ⊆ Nφ(A(m−1)). Thus Nφ(A(m−1)) = N (A(m−1)) and so
<N (A(m−1)), [ ]k+1> is characteristic in < A(m−1), [ ]k+1>.

Let x be any element of A and a1, . . . , am−1 fixed elements of Z(A). If a class
U = θ(α) is an identity of < A(m−1), [ ]k+1>, then

[U . . .U
︸ ︷︷ ︸

j−1

θ(xa1 . . . am−1)U . . .U
︸ ︷︷ ︸

k− j+1

]k+1 = θ(xa1 . . . am−1)

for any j = 1, . . . , k + 1. Since a1, . . . , am−1 ∈ Z(A), it follows that

[θ(α) . . . θ(α)
︸ ︷︷ ︸

j−1

θ(xa1 . . . am−1) θ(α) . . . θ(α)
︸ ︷︷ ︸

k− j+1

]k+1 = θ(xa1 . . . am−1),

θ(α . . . α
︸ ︷︷ ︸

j−1

xa1 . . . am−1 α . . . α
︸ ︷︷ ︸

k− j+1

) = θ(xa1 . . . am−1),

θ(α . . . α
︸ ︷︷ ︸

j−1

x α . . . α
︸ ︷︷ ︸

k− j+1

a1 . . . am−1) = θ(xa1 . . . am−1),

θ(α . . . α
︸ ︷︷ ︸

j−1

x α . . . α
︸ ︷︷ ︸

k− j+1

)θ(a1 . . . am−1) = θ(x)θ(a1 . . . am−1),

θ(α . . . α
︸ ︷︷ ︸

j−1

x α . . . α
︸ ︷︷ ︸

k− j+1

) = θ(x),

θ([α . . . α
︸ ︷︷ ︸

j−1

x α . . . α
︸ ︷︷ ︸

k− j+1

]) = θ(x),

[α . . . α
︸ ︷︷ ︸

j−1

x α . . . α
︸ ︷︷ ︸

k− j+1

] = x .

Hence α is m-neutral in < A, [ ] >and so E(A(m−1)) ⊆ N (A(m−1)). In view of
Proposition 3.9, it follows that N (A(m−1)) = E(A(m−1)). The theorem is proved. �	
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Note that the equality <N (A(m−1)), [ ]k+1>=<E(A(m−1)), [ ]k+1> is also true
for some polyadic groups< A, [ ]>with empty center (see Examples 5.4, 5.5 below).

Let < A, [ ]>be an n-ary group (n = k(m − 1) + 1) and c1, . . . , cm−2 elements of
A. Define in A a (k + 1)-ary operation [ ]k+1,c1...cm−2 such that

[a1a2 . . . ak+1]k+1,c1...cm−2 = [a1c1 . . . cm−2a2c1 . . . cm−2 . . . akc1 . . . cm−2ak+1].

It is easy to show (see, for example, [4]) that < A, [ ]k+1,c1...cm−2 > is a (k + 1)-ary
group. Moreover, the following lemma is true.

Lemma 4.2 [9, Lemma 3]. Let < A, [ ]>be an n-ary group (n = k(m − 1) + 1) and
c1, . . . , cm−2 ∈ A. Then the map τ :A(m−1) → A such that τ(θ(ac1 . . . cm−2)) = a is
the isomorphism of a (k + 1)-ary group < A(m−1), [ ]k+1 > on a (k + 1)-ary group
< A, [ ]k+1,c1...cm−2 >.

For the fixed elements c1, . . . , cm−2 of an n-ary group < A, [ ]>put

N (A, c1 . . . cm−2) = {a ∈ A|ac1 . . . cm−2 ∈ N (A,m)}.

It is evident that

N (A, c1 . . . cm−2) = {a ∈ A|θ(ac1 . . . cm−2) ∈ N (A(m−1))}

and

N (Am−1) = {θ(ac1 . . . cm−2)|ac1 . . . cm−2 ∈ N (A,m)}.

Therefore, the set N (A, c1 . . . cm−2) = N τ (A(m−1)), where τ is the isomorphism
from Lemma 4.2.

Denote by E(A, c1 . . . cm−2) the set of all identities of < A, [ ]k+1,c1...cm−2 >. It
is evident that E(A, c1 . . . cm−2) = Eτ (A(m−1)), where τ is the isomorphism from
Lemma 4.2.

In view of Lemma 4.2, we get the following isomorphic copy of Theorem 4.1.

Theorem 4.3 Let < A, [ ] >be an n-ary group, where n = k(m − 1) + 1. If
N (A, c1 . . . cm−2) is not empty, then:

(1) < N (A, c1 . . . cm−2), [ ]k+1,c1...cm−2 > is an invariant (k + 1)-ary subgroup of
< A, [ ]k+1,c1...cm−2 > and N (A, c1 . . . cm−2) ⊆ Z(A);

(2) If Z(A) is not empty, then<N (A, c1 . . . cm−2), [ ]k+1,c1...cm−2 > is a characteris-
tic subgroup of <A, [ ]k+1,c1...cm−2 > and <N (A, c1 . . . cm−2), [ ]k+1,c1...cm−2 >

=<E(A, c1 . . . cm−2), [ ]k+1,c1...cm−2 >.

5 Corollaries and Examples

If in Theorem 4.1 we put m = n, then we get the statement about trivial subgroup of
a group A0 = A(n−1).

If in Theorem 4.1 we put m = 2, then we get
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Corollary 5.1 Let < A, [ ] >be an n-ary group such that N (A′) is not empty. The
following statements hold:

(1) <N (A′), [ ]n > is an invariant n-ary subgroup of an n-ary group< A′, [ ]n >and
N (A′) ⊆ Z(A′);

(2) If Z(A) is not empty, then < N (A′), [ ]n > is characteristic in < A′, [ ]n >and
<N (A′), [ ]n >=<E(A′), [ ]n >.

Since the center of an n-ary group with identities is not empty and the map ψ :
θ(a) → a is isomorphism of an n-ary group < A′, [ ]n >on an n-ary group <

A, [ ]>such that ((N (A′))ψ = E(A), from Corollary 5.1 we get the following

Corollary 5.2 (Gal’mak [1,2]). If E(A) is not empty, then < E(A), [ ] > is a char-
acteristic n-ary subgroup of an n-ary group < A, [ ]>and E(A) ⊆ Z(A).

Corollary 5.2 follows also from Theorem 4.3 in the case when the sequence
c1 . . . cm−2 is empty (that is, m = 2).

If in Theorem 4.3 we putm = n, then we get the statement about trivial subgroup of
a group< A, [ ]2,c1...cn−2 >with binary operation [a1a2]2,c1...cn−2 = [a1c1 . . . cn−2a2].

In view of Theorem 4.1(2), if the center of an n-ary group < A, [ ]>(n = k(m −
1)+1) is not empty, then<N (A(m−1)), [ ]k+1>=<E(A(m−1)), [ ]k+1>. Therefore,
if we want to get an n-ary group < A, [ ]>for which E(A(m−1)) � N (A(m−1)), then
we must consider < A, [ ]>such that Z(A) is empty.

Example 5.3 Let B3 = {(12), (13), (23)} be a set of all odd permutation of the set
{1, 2, 3},< B3, [ ]>a 7-ary group with 7-ary operation derived from operation of the
symmetric group S3. It is easy to see that Z(B3) is empty. Since 7 = 3(3 − 1) + 1,
we can consider the 3-neutral sequences in < B3, [ ]>. Moreover, in view of Remark
2.4, there is a 4-ary group < B(2)

3 , [ ]4 >. Since every sequence of length 2 of <

B3, [ ] > is equivalent to one of the sequences λ = (12)(12), μ = (12)(13) or
ν = (12)(23), B(2)

3 = {θ(λ), θ(μ), θ(ν)}. It is not difficult to show that every element

of < B(2)
3 , [ ]4 > is an identity, that is, E(B(2)

3 ) = B(2)
3 , and N (B(2)

3 ) = {θ(λ)}. Thus
N (B(2)

3 ) 
= E(B(2)
3 ).

The following two examples show that there are polyadic groups < A, [ ] >(n =
k(m − 1) + 1) with Z(A) = ∅ such that <N (A(m−1)), [ ]k+1 >=< E(A(m−1)),

[ ]k+1>.

Example 5.4 Let < B3, [ ] >be a 7-ary group such as in Example 5.3. Since 7 =
2(4 − 1) + 1, we can consider 4-neutral sequences in < B3, [ ] >. Furthermore, in
view of Remark 2.4, there is a ternary group < B(3)

3 , [ ]3 >. Since every sequence of
length 3 of < B3, [ ]> is equivalent to one of the sequences λ = (12)(12)(12), μ =
(12)(12)(13) or ν = (12)(12)(23), B(3)

3 = {θ(λ), θ(μ), θ(ν)}. It is not difficult to
show that there are no identities in < B(3)

3 , [ ]3 >and the set N (B(3)
3 ) is also empty.

Thus N (B(3)
3 ) = E(B(3)

3 ) = ∅.

Example 5.5 Let B3 be a set such as in Example 5.3, < B3, [ ] > a 5-ary group
with 5-ary operation derived from operation of the symmetric group S3. It is easy
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to see that Z(B3) is empty. Since 5 = 2(3 − 1) + 1, we can consider 3-neutral
sequences in < B3, [ ] >. Moreover, in view of Remark 2.4, there is a ternary group
< B(2)

3 , [ ]3 >. As in Example 5.3, we get B(2)
3 = {θ(λ), θ(μ), θ(ν)}. Furthermore,

N (B(2)
3 ) = E(B(2)

3 ) = {θ(λ)}.
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