УДК 517.91

MATEMATUKA

А. И. СУББОТИН

ЭКСТРЕМАЛЬНЫЕ СТРАТЕГИИ В ДИФФЕРЕНЦИАЛЬНЫХ ИГРАХ С ПОЛНОЙ ПАМЯТЬЮ

(Представлено академиком Н. Н. Красовским 22 II 1972)

Рассматриваются позиционные дифференциальные игры, в качестве платы выбран некоторый полунепрерывный снизу (либо сверху) функционал, вычисляемый на движениях конфликтно управляемой системы. Описаны конструкции, доказывающие существование оптимальных чистых и смешанных стратегий игроков. Предполагается, что игроки располагают информацией о реализующемся фазовом положении и помнят предыдущие состояния системы. Основу подхода, который используется здесь при исследовании дифференциальных игр с полной памятью, составляет экстремальная конструкция, описанная в работах (1-3).

Пусть n-мерный фазовый вектор x конфликтно управляемой системы Σ изменяется в соответствии с уравнением

$$dx/dt = f(t, x, u, v), \quad x(t_0) = x_0;$$
 (1)

здесь f(t, x, u, v) — непрерывная вектор-функция, удовлетворяющая условию Липшица по x; u, v — управляющие воздействия первого и второго игроков, реализации которых стеснены условиями

$$u[t] \in P, \quad v[t] \in Q, \tag{2}$$

где P и Q — компакты в соответствующих векторных пространствах.

Исход игры оценивается функционалом $\gamma(x[\cdot])$, который определен на движениях x[t], $t_0 \leqslant t \leqslant T$. Будем полагать, что плата игры — функционал $\gamma(x[\cdot])$ зависит от вектор-функций x[t], $t_0 \leqslant t \leqslant T$, полунепрерывно снизу, т. е. из условий $x_h[\cdot] \rightrightarrows x_*[\cdot]$, $\gamma(x_h[\cdot]) \to \gamma$, при $k \to \infty$ вытекает неравенство $\gamma(x_*[\cdot]) \leqslant \gamma$. Здесь символ $x_h[\cdot] \rightrightarrows x_*[\cdot]$ обозначает равномерную сходимость $\max\{\|x_h[t]-x_*[t]\|: t \in [t_0, T]\} \to 0$ при $k \to \infty$, символом $\|x\|$ обозначается эвклидова норма вектора x. (Условие полунепрерывности снизу можно заменить условием полунепрерывности сверху, последний случай легко сводится к первому.) Отметим, что условию полунепрерывности удовлетворяет плата игры в типичных игровых задачах динамики, в частности, в игре преследования время до встречи зависит от движений системы полунепрерывно снизу.

Как обычно, будем считать, что первый игрок заинтересован в исходе игры, при котором функционал $\gamma(x[\,\cdot\,])$ принимает наименьшее возможное значение. Второй игрок, напротив, стремится максимизировать значение платы при самом неблагоприятном поведении партнера. Причем каждому из игроков наперед неизвестны управляющие воздействия, которые будут реализованы партнером в процессе игры. При постановке многих игровых задач динамики предполагается, что игрокам в каждый текущий момент времени $t \geqslant t_0$ становится известным реализованное значение вектора x[t]. Такое предположение об информированности игроков позволяет в этих задачах определить полный класс позиционных стратегий игроков. который содержит оптимальные стратегии, доставляющие ситуапин типа селловой точки (4). В данном случае, когда в качестве платы

выбран произвольный полунепрерывный функционал $\gamma(x[\cdot])$, этой информации о состоянии системы, вообще говоря, недостаточно для построения полного класса стратегий. Поэтому в рассматриваемых здесь игровых задачах вводится следующее предположение об информированности игроков. В каждый текущий момент времени $t \ge t_0$ игрокам известно не только реализованное состояние системы Σ — вектор x[t], но игроки помнят все предыдущие состояния $x[\tau]$, $t_0 \le \tau < t$.

Итак, позицией игры в момент времени $t \ge t_0$ будем называть совокупность, состоящую из скаляра t и вектор-функции $x[\tau]$, $t_0 \le \tau \le t$,— движения системы Σ , реализовавшего на промежутке времени $[t_0, t]$; эти движения обозначаются в дальнейшем символом $x[\cdot; t_0, t]$.

Введем теперь некоторые обозначения и определения. Обозначим через $R(t_0, T)$ компактное подмножество пространства непрерывных вектор-функций $x[\tau]$, $t_0 \le \tau \le T$, которое содержит всякое движение системы Σ , выходящее из точки $\{x_0, t_0\}$. Такое множество всегда можно указать. Символом $R(t_0, t)$ обозначим множество, которое составляют вектор-функции $x[\tau]$ из $R(t_0, T)$, рассматриваемые на отрезке $[t_0, t]$, $t \le T$.

Определение 1. Стратегией первого (второго) игрока будем называть функцию $U=U(t,\ x[\cdot;\ t_0,\ t])\ (V=V(t,\ x[\cdot;\ t_0,\ t]))$, которая точкам $\{t,\ x[\cdot;\ t_0,\ t]\},\ t\in[t_0,\ T],\ x[\cdot;\ t_0,\ t]\in R(t_0,\ t)$, ставит в соответствие непустые замкнутые множества $U(t,\ x[\cdot;\ t_0,\ t])\subset P(V(t,\ x[\cdot;\ t_0,\ t])$

 $t_0, t]) \subset Q$.

Определение 2. Пусть U — некоторая стратегия первого игрока, вектор-функция $x_*[\cdot; t_0, t_*]$ содержится во множестве $R(t_0, t_*)$, совокупность Γ полуинтервалов $(\tau_i, \tau_{i+1}), \tau_0 = t_*, i = 0, 1, 2, \ldots$, покрывает отрезок $[t_*, T]$. Аппроксимационным движением $x_a[t] =$ $= x_a[t; t_*, x_*[\cdot; t_0, t_*], U, \Gamma]$ системы Σ , порожденным на отрезке $[t_*, T]$ стратегией U, будем называть всякую абсолютно непрерывную вектор-функцию $x_a[t]$, которая удовлетворяет условиям

$$dx_{a}[t]/dt \in F(t, x_{a}[t], u[\tau_{i}]), \tau_{i} \leq t < \tau_{i+1}, i = 0, 1, 2, ..., u[\tau_{i}] \in U(\tau_{i}, x_{a}[\cdot; t_{0}, \tau_{i}]), F(t, x, u) = co\{f(t, x, u, v): v \in Q\}, x_{a}[\cdot; t_{0}, \tau_{i}] = \{x_{*}[\tau], t_{0} \leq \tau \leq t_{*}; x_{a}[\tau], t_{*} \leq \tau \leq \tau_{i}\}.$$

Отметим, что вектор-функция $x_*[\cdot; t_0, t_*]$ играет роль начального условия для движения $x_a[t], t \geqslant t_*$.

Определение 3. Движением системы Σ $x[t] = x[t; t_*, x_*[\cdot; t_0, t_*], U]$, порожденным на отрезке $[t_*, T]$ стратегией U и удовлетворяющим начальному условию $x[\cdot; t_0, t_*] = x_*[\cdot; t_0, t_*] \in R(t_0, t_*)$, будем называть всякую абсолютно непрерывную вектор-функцию x[t], $t_* \leq t \leq T$, для которой можно указать последовательность аппроксимационных движений $x_a^{(k)}[t] = x_a[t; t_*, x_*^{(k)}[\cdot; t_0, t_*], U, \Gamma_k], t_* \leq t \leq T$, такую, что

$$\begin{split} x_a^{(k)}\left[t\right] & \rightrightarrows x\left[t\right], \quad t_* \leqslant t \leqslant T, \\ x_*^{(k)}\left[\cdot \; ; \; t_0, \; t_*\right] & \rightrightarrows x_*\left[\cdot \; ; \; t_0, \; t_*\right], \quad \Delta\left(\Gamma_k\right) \to 0 \quad \text{при} \quad k \to \infty, \end{split}$$

где $\Delta(\Gamma) = \sup (\tau_{i+1} - \tau_i), i = 0, 1, 2, \ldots$

Аналогичным образом определяются движения системы Σ , по-

рожденные стратегиями V второго игрока.

Отметим, что совокупность движений $x[t; t_*, x_*[\cdot; t_0, t_*], U]$ ($x[t; t_*, x_*[\cdot; t_0, t_*], V]$) содержит всякое движение системы Σ , которое порождается стратегией U (V) в паре с любой суммируемой реализацией $v[t] \in Q$ ($u[t] \in P$) управления второго (первого) игрока. Поэтому выполнение некоторого свойства для всех движений $x[t; t_*, x_*[\cdot; t_0, t_*], U]$ ($x[t; t_*, x_*[\cdot; t_0, t_*], V]$) будет означать, что стратегия U (V) гарантирует осуществление этого свойства при любом допустимом поведении противника.

Перейдем теперь к описанию экстремальной конструкции для рассматриваемого здесь случая дифференциальных игр с полной памятью. Будем сначала предполагать, что для точек $\{t, x\} \in [t_0, T] \times E_n$ и для любых векторов $s \in E_n$ выполняется равенство

$$\max_{u} \min_{v} s'f(t, x, u, v) = \min_{v} \max_{u} s'f(t, x, u, v), \quad u \in P, \quad v \in Q, \quad (3)$$

тде символ штрих означает траспонирование.

Определение 4. Пусть задана некоторая система непустых замкнутых множеств $W(t) \subset R(t_0, t), t_0 \leqslant t \leqslant T$. Эту систему будем называть u-с табильной, если, каковы бы ни были числа $t_0 \leqslant t \leqslant t' \leqslant T$, векторфункция $x_*[\cdot; t_0, t_*] \in W(t_*)$ и стратегия V, существует движение $x_*[t] = x_*[t, t_*, x_*[\cdot; t_0, t_*], V]$ такое, что вектор-функция $\tilde{x}[\cdot; t_0, t^*) = \{x_*[\tau], t_0 \leqslant \tau \leqslant t_*; x^*[\tau], t_* \leqslant \tau \leqslant t^*\}$ содержится во множестве $W(t^*)$.

Рассмотрим неоднозначную функцию $U_e = U_e(t, x[\cdot; t_0, t])$ следующего вида. Если $x[\cdot; t_0, t] \in W(t)$, то $U_e(t, x[\cdot; t_0, t]) = P$. Если $x[\cdot; t_0, t] \notin W(t)$, то множество $U_e(t, x[\cdot; t_0, t])$ составляют точки u_e , которые удовлетворяют условию максимума

$$\max_{u} \min_{v} s'f(t, x, u, v) = \min_{v} s'f(t, x, u_e, v),$$

$$u \in P, \quad v \in Q.$$
(4)

жотя бы при одном из векторов s вида $s = w_0[t] - x[t]$, где $w_0[\cdot; t_0, t]$ — точки множества W(t), ближайшие к точке $x[\cdot; t_0, t]$.

Лемма 1. Если $x_*[\cdot; t_0, t_*] \in W(t_*)$, система W(t), $t_0 \leqslant t \leqslant T$, u-стабильна u выполняется условие (3), то для любого движения $x[t] = x[t; t_*, x_*[\cdot; t_0, t_*], U_e]$ выполняется включение $\tilde{x}[\cdot; t_0, T] \in W(T)$, $\tau \neq \tilde{x}[\tau] = \{x_*[\tau], t_0 \leqslant \tau \leqslant t_*; x[\tau], t_* \leqslant \tau \leqslant T\}$.

Основу доказательства этого утверждения составляют оценки, приве-

денные в работе (¹), стр 1013.

Определение 5. Множеством поглощения $W(t_*, c)$, $t_0 \leqslant t_* \leqslant T$, назовем совокупность элементов $x_*[\cdot; t_0, t_*] \in R(t_0, t_*)$, удовлетворяющих условию: для любой стратегии V найдется движение $x[t] = x[t; t_*, x_*[\cdot; t_0, t_*], V]$ такое, что для вектор-функции $\widetilde{x}[\tau] = \{x_*[\tau], t_0 \leqslant \tau \leqslant t_*; x[\tau], t_* \leqslant \tau \leqslant T\}$ будет справедливо неравенство $\gamma(\widetilde{x}[\cdot]) \leqslant c$.

Используя подход, изложенный в работах (1 , 4), можно показать, что для числа c_{0} , определенного соотношением

$$c_0 = \inf \{c: x_0 \in W(t_0, c)\}, \tag{5}$$

справедливо включение $x_0 \in W(t_0, c_0)$, причем множества $W(t, c_0)$, $t_0 \le t \le T$, замкнуты и непусты, система этих множеств *u*-стабильна. Поэтому из определения 5 в силу леммы 1 вытекает следующее утверждение.

Теорема 1. Если выполняется условие (3), то рассматриваемая дифференциальная игра с полной памятью в классе стратегий $\{U\}$ и $\{V\}$ имеет значение, равное числу c_0 (5). Причем стратегия U_c , экстремальная к системе множеств $W(t, c_0)$, $t_0 \le t \le T$, гарантирует завершение игры с платой $\gamma(x[\cdot]) \le c_0$. Для любого числа $c < c_0$ существует стратегия V_c , которая обеспечивает выполнение неравенства $\gamma(x[\cdot]) > c$.

Пусть теперь условие (3) не выполняется. В этом случае значение игры будет существовать в классе смешанных стратегий $\{\tilde{U}\}$ и $\{\tilde{V}\}$. Эти стратегии ставят в соответствие точкам $\{t, x[\cdot; t_0, t]\} \in [t_0, T] \times R(t_0, t)$ непустые слабо замкнутые множества вероятностных мер $\{\mu(du)\}$ и $\{v(dv)\}$, заданных на компактах P и Q. При определении движений множества $F(t, x_a[t], \mu[t_i])$ следует заменить $F(t; x_a[t], \mu(du; \tau_i))$, где

 $\mu(du; \tau_i) \subseteq \widetilde{U}(\tau_i, x_a[\cdot; t_0, \tau_i]),$

$$F(t, x, \mu) = \operatorname{co}\left\{\int f(t, x, u, v) \,\mu(du) \colon v \in Q\right\}.$$

При определении экстремальной смешанной стратегии условие максимума (4) заменяется соотношением

$$\max_{\mu} \min_{\nu} \iint s' f(t, x, \mu, \nu) \, \mu(du) \, \nu(dv) = \min_{\nu} \iint s' f(t, x, \mu, \nu) \, \mu_0(du) \, \nu(dv).$$

В определениях 4 и 5 и в формулировке леммы 1 чистые стратегии слепует заменить смешанными.

Теорема 2. В дифференциальной игре с полной памятью в классе смешанных стратегий $\{\tilde{U}\}$, $\{\tilde{V}\}$ существует значение, равное числу $\tilde{c}_0 = \inf\{c\colon x_0 \in W(t_0,c)\}$, где W(t,c) — множество поглощения, определенное для смешанных стратегий. Причем смешанная стратегия \tilde{U}_e , экстремальная к системе множеств $W(t,\tilde{c}_0)$, $t_0 \leq t \leq T$, гарантирует завершение игры с платой $\gamma(x[\cdot]) \leq \tilde{c}_0$. Для любого числа $c < \tilde{c}_0$ существует смешанная стратегия \tilde{V}_c , которая обеспечивает выполнение неравенства $\gamma(x[\cdot]) > c$.

Наконец, в соответствии с подходом, развитым в статье (2), можно решить задачу о нахождении минимаксных и максиминных чистых стратегий в случае, когда условие (3) не выполняется. Устанавливается, что класс чистых стратегий 3 3 является полным, т. е. стратегии из этих классов доставляют игрокам наилучшие результаты, которых можно достичь при выборе чистых позиционных стратегий.

Результаты данной работы можно перенести на случай, когда движение системы Σ описывается уравнением

$$dx[t]/dt = f(t, x[\cdot; \eta, t], u, v), \quad t \ge t_0$$

и удовлетворяет начальному условию $x[\tau] = \varphi(\tau)$ при $\eta \le \tau \le t_0$. Здесь оператор f отображает множество $D = \{t \in [t_0, T]\} \times R(\eta, t) \times P \times Q$ в пространство E_n и удовлетворяет некоторым условиям непрерывности. Основные элементы экстремальной конструкции и приведенные выше результаты легко переформулируются для этого случая.

Примечание. Множества W(t,c) здесь было удобно определить как множества поглощения (см. определение 5). Оказывается, что эти множества можно также определять с помощью попятных процедур, которые подобны конструкциям, описанным в работах ($^{5-7}$) при исследовании дифференциальных игр преследования.

Институт математики и механики Уральского научного центра Академии наук СССР Свердловск Поступило 25 X II 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Н. Н. Красовский, А. И. Субботин, ПММ, 34, № 6, 1005 (1970).

² Н. Н. Красовский, ДАН, 201, № 2, 270 (1971).

³ Н. Н. Красовский, ПАН, Ю. С. Осипов, ДАН, 197, № 4, 777 (1971).

⁴ Н. Н. Красовский, А. И. Субботин, ПММ, 35, № 1, 110 (1971).

⁵ Л. С. Понтрягин, ДАН, 175, № 4, 764 (1967).

⁶ Б. Н. Пшеничный, ДАН, 184, № 2, 285 (1969).

⁷ Р. П. Федоренко, Журн. вычислит. матем. и матем. физ., 9, № 5, 1036 (1969).