УДК 541.132:547.551.5+541.651

ФИЗИЧЕСКАЯ ХИМИЯ

Б. В. ЖАДАНОВ, А. М. ЛУКИН, Н. А. БОЛОТИНА, И. А. ПОЛЯКОВА, Г. Б. ЗАВАРИХИНА

ИССЛЕДОВАНИЕ ИОНИЗАЦИИ НЕКОТОРЫХ АМИНОБЕНЗОЛФОСФОНОВЫХ И АМИНОБЕНЗОЛАРСОНОВЫХ КИСЛОТ В ВОДНЫХ РАСТВОРАХ МЕТОДАМИ У.-Ф. И И.-К. СПЕКТРОСКОПИИ

(Представлено академиком М. И. Кабачником 24 III 1972)

В литературе имеются неполные данные о константах ионизации аминобензолфосфоновых (1, 2) и аминобензоларсоновых (3) кислот и практически не исследовался вопрос о том, ионизацию какой конкретной функциональной группы описывает каждая из найденных констант.

В общем случае процесс ионизации аминобензолфосфоновых и аминобензоларсоновых кислот (H_2L) при переходе от кислых к щелочным растворам может протекать по уравнениям:

$$\begin{array}{c} H_{3}^{+} N C_{6} H_{4} R O_{3} H_{2} \xrightarrow{OH^{-}} H_{3}^{+} N C_{6} H_{4} R O_{3} H^{-} \xrightarrow{OH^{-}} H_{2} N C_{6} H_{4} R O_{3} H^{-} \xrightarrow{OH^{-}} H_{2} N C_{6} H_{4} R O_{3}^{2-}, \\ H_{3}^{+} N C_{6} H_{4} R O_{3} H_{2} \xrightarrow{OH^{-}} H_{3}^{+} N C_{6} H_{4} R O_{3} H^{-} \xrightarrow{OH^{-}} H_{2} N C_{6} H_{4} R O_{3}^{2-} \xrightarrow{OH^{-}} H_{2} N C_{6} H_{4} R O_{3}^{2-}, \\ \end{array} \right) (II)$$

 $H_3^*NC_6H_4RO_3H_2 \longrightarrow H_3^*NC_6H_4RO_3H^- \longrightarrow H_3^*NC_6H_4RO_3^2 \longrightarrow H_2NC_6H_4RO_3^2$, (111)

где R-P или As.

В литературе для аминофосфоновых и аминоарсоновых кислот приведены только константы pK_1 и pK_2 , причем большинство авторов предполагает, что ионизация протекает по уравнению (I).

В настоящей работе спектрофотометрическим методом (4) определены отсутствующие в литературе константы ионизации для о-, n-, м-аминобензолфосфоновых (о-, n-, м-АБФ), о-, n-, м-аминобензоларсоновых (о-, n-, м-АБА) и 2-амино-5-хлорбензолфосфоновой (АХБФ) кислот и на основании исследования у.-ф. и и.-к. спектров водных растворов указанных соединений в области рН 0—13 определена последовательность ионизации функциональных групп.

Все исследуемые кислоты синтезированы по известным методикам (1, 5-7) и чистота их контролировалась по данным элементного микроанализа.

У.-ф. спектры $10^{-3}-10^{-4}$ *М* водных растворов кислот получены на автоматическом спектрофотометре Шимадзу MPS-50L в кварцевых кюветах толщиной 1 см при 25°. И.-к. спектры 0,1 *М* растворов кислот в $\rm H_2O$ (1000—1300 см⁻¹) и в $\rm D_2O$ (700—1450 см⁻¹) получены на инфракрасном спектрометре UR-20 с использованием кремниевых кювет с толщиной рабочего слоя 30 $\rm \mu$. В канал сравнения помещается кювета, заполненная соответственно $\rm H_2O$ или $\rm D_2O$. Значения рН измеряли на рН-метре ЛПУ-01.

В табл. 1 приведены константы ионизации для аминобензолфосфоновых и аминобензоларсоновых кислот, а также для сравнения аналогичные данные для бензолфосфоновой и бензоларсоновой кислот и дан порядок ионизации функциональных групп, который будет обоснован пиже. При анализе данных, приведенных в табл. 1, обращает на себя внимание тот

факт, что значение pK_1 для бензоларсоновой кислоты на единицу выше, чем pK_1 для бензолфосфоновой кислоты, тогда как для аминобензоларсоновых и аминобензолфосфоновых кислот значения pK_1 примерно одного

порядка.

Согласно данным (8), у.-ф. спектры протонированной и непротонированной форм анилина в водных растворах резко различаются. В спектре протонированной формы анилина ($H_3^+N-C_6H_5$) наблюдается широкая слабая полоса в области 240-260 м μ ($\epsilon=170$) с заметно выраженной

Таблица 1

Кислота	pK₀ H ₃ L → H ₂ L	Диссо- циирую- щая груп- па	pK₁ H₂L≓HL−	Диссо- циирую- щая груп- па	$\operatorname{HL}^{\operatorname{p} K_2} { ightharpoons} \operatorname{L}^{\scriptscriptstyle 2-}$	Диссо- циирую- щан груп- па
Бензолфосфоновая о-Аминобензолфосфоновая п-Аминобензолфосфоновая м-Аминобензолфосфоновая 2-Амино-5-хлорбензолфосфоновая	<1 * <1 * <1 * <1 * <1 *	PO ₃ H ₂ PO ₃ H ₂ PO ₃ H ₂ PO ₃ H ₂	2,48 4,0* 3,8* 4,45* 3,5*	PO ₃ H ₂ NH ₃ ⁺ NH ₃ ⁺ NH ₃ ⁺ NH ₃ ⁺	7,01 7,29 7,53 7,16 6,9	PO ₃ H ⁻ PO ₃ H ⁻ PO ₃ H ⁻ PO ₃ H ⁻
Бензоларсоновая о-Аминобензоларсоновая п-Аминобензоларсоновая м-Аминобензоларсоновая	1,1* 1,65* 2,8*	NH ₃ NH ₃ NH ₃	3,47 3,77 4,05 4,05	AsO ₃ H ₂ AsO ₃ H ₂ AsO ₃ H ₂ AsO ₃ H ₂	8,48 8,66 8,92 8,62	AsO ₃ H ⁻ AsO ₃ H ⁻ AsO ₃ H ⁻ AsO ₄ H

^{*} Наши данные.

тонкой структурой (247, 252, 258 мµ), тогда как в спектре $\rm H_2N-C_6H_5$ наблюдаются две интенсивные полосы с максимумами 230 (ϵ = 8400) и 279 мµ (ϵ = 1400). Наши исследования у.-ф. спектров анилина в водных растворах полностью подтвердили литературные данные. Как видно из табл. 2, у.-ф. спектры формы $\rm H_2L$ o-, n-, m-АБФ и АХБФ близки к спектру протонированной формы анилина, а спектры $\rm HL^-$ - и $\rm L^2$ --форм этих кислот близки к спектру непротонированной формы анилина, т. е. у.-ф. спектры свидетельствуют о цвиттерионной структуре форм $\rm H_2L$ этих кислот и о диссоциации $\rm -NH_3^+$ -групп при переходе от $\rm H_2L$ - к $\rm HL^-$ -формам. Следовательно, процесс ионизации $\rm o$ -, $\rm n$ -, $\rm m$ -АБФ и АХБФ кислот протекает

по уравнению (II).

 \dot{V} .-ф. спектры форм H_2L o-, n-, m-АБА близки к спектру непротонированной формы анилина, причем при переходе к формам HL- и L2- существенных изменений в спектрах не наблюдается. Таким образом для форм H_2L и H_2L^- о-, n-, m-АБА цвиттерионная структура не характерна, т. е. диссоциация о-, n-, м-АБА в отличие от аминобензолфосфоновых кислот описывается уравнением (I). Максимумы полос в и.-к. сцектрах волных растворов бензолфосфоновой и бензоларсоновой кислот приведены в табл. 3. И-к. спектры водных растворов бензолфосфоновой кислоты в области валентных колебаний фосфоновой группы (900-1300 см-1) совпали со спектрами соответствующих ионных форм метилфосфоновой кислоты (9, 10). Исключение составила полоса в области 1130-1140 см $^{-1}$, наблюдающаяся в спектрах всех ионных форм бензолфосфоновой кислоты и обусловлепная, по-видимому, колебаниями бензольного кольда, В табл. 3 в соответствии с работами (9, 10) дано отнесение частот в спектрах H₂L-, HLи L²-форм бензолфосфоновой кислоты (L²- полностью ионизированная форма кислоты). Отнесение частот в спектрах бензоларсоновой кислоты сделано по аналогии со спектрами бензолфосфоновой кислоты, И.-к. спект-

	$\mathrm{H}_2\mathrm{L}$		HL-		Γ*-	
Кислота	ν, Μ [μ	ε	ν, M[L	٤	ν, м μ	ε
о-Аминобензолфосфоновая	252 *		236	6050	236	6900
pH: $H_2L_{1,75}$; $H\hat{L}^-\hat{5},3$; $L^{2-}10,4$	259	310	294	2200	290	2250
	263	330				
İ	269	300			1	
п-Аминобензолфосфоновая	252	460	245	13300	240	14000
pH: H_2L 1,80; HL^- 5,5; L^{2-} 10,0	257	515	286	1300	282	1800
	263	515	}		l t	
	269	400]		1 1	
м-Аминобензолфосфоновая	252 *		236	5850	233	6200
pH: H_2L 1,98; HL^- 5,55; L^{2-} 10,5	259	290	291	1700	288	1700
1	263	330		1	1	
9 A 7 7	270	270	0.0	0000	0.0	0500
2-Амино-5-хлорбензолфосфоно-	265 *	100	246	9600	246	9500
вая рН: H ₂ L 1,34; HL ⁻ 5,05; L ²⁻ 10,9	272	460	306	2400	302	2300
о-Аминобензоларсоновая	$\frac{280}{241}$	430 5580	239	6400	920	6500
рН: H ₂ L 2,42; HL ⁻ 5,98; L ² 11,1	$\frac{241}{305}$	2840	239 299	$6400 \\ 2750$	239 295	2500
п-А минобензодарсоновая	$\frac{303}{258}$	13000	$\frac{299}{250}$	15600	$\frac{295}{245}$	15400
рН: H ₂ L 2,6; HL ⁻ 6,3; L ²⁻ 11,4	200	13000	200	15000	288	1200
м-Аминобензоларсоновая	240	4800	238	6300	235	6500
pH: H ₂ L 2,45; HL ⁻ 6,45; L ² -11.3	$\frac{240}{295}$	1500	293	1900	290	2000

^{*} Плечо.

Таблица 3

	H₂L			HL-	To-		
Кислота	v*, cM ⁻¹ ,	отнесение	ν, cm-1	отнесение	ν, cm ⁻¹	отнесение	
Бензолфосфоновая	1003 cp.	$v_{as}P(OH)_2$	920 ср. ш. 1056 ср.	$v_{m{s}} PO_2$	963 c. 1060 o. c.	$v_{\mathbf{s}} PO_{3} \ v_{a\mathbf{s}} PO_{3}$	
Бензоларсоновая	1170 с. 915 с. ш.	$ \begin{array}{c} \mathbf{vP} = 0 \\ \mathbf{vAs} = 0 \end{array} $	1150 с. нг. 880 с. 860 пл.	$rac{{ m v}_{as}{ m PO}_2}{{ m v}_{as}{ m AsO}_2}$	825 o. c.	$v_{as} { m AsO_3}$	

ры H_2L^- и HL^- форм o-, n-, n-AБФ и AXБФ в области 900-1300 см $^{-1}$ оказались близки к спектру HL^- формы бензолфосфоновой кислоты, свидетельствуя о налични в формах H_2L и HL^- названных выше кислот грунп $-PO_3H^-$, что возможно только в случае диссоциации последних по уравлению (II).

И.-к. спектры H_2L^- , HL^- и L^2 -форм o-, n-, m-ABA оказались близки соответственно спектрам H_2L^- , HL^- и L^2 -форм бензоларсоновой кислоты. Этот факт свидетельствует о наличии в H_2L^- , HL^- и L^2 -формах o-, n-, m-ABA групп AsO_3H_2 , AsO_3H^- и AsO_3^2 - соответственно, что указывает на диссоциацию названных кислот по уравнению (I).

Таким образом, и.-к. спектры полностью подтвердили вывод, сделанный на основании у.-ф. спектров о диссоциации o-, n-, m-AB Φ и AXB Φ по уравнению (II) и o-, n-, m-ABA по уравнению (I).

Различие в характере диссоциации о-, n-, м-АБФ и АХБФ, с одной стороны, и о-, n-, м-АБА — с другой, можно объяснить более высокой кислотностью фосфоновых групп по сравнению с арсоновыми (4) и, возможно, повышением основности атомов азота в аминобензолфосфоновых кислотах по сравнению с аминобензоларсоновыми кислотами. Можно предпо-

ложить, что известное различие в реакционной способности аминобензолфосфоновых и аминобензоларсоновых кислот в водных растворах (11-13) объясняется описанным различием в структурах ионных форм последних.

Всесоюзный научно-исследовательский институт химических реактивов и особо чистых химических веществ Москва

Поступило 19 III 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

1 G. O. Doak, L. D. Freedman, J. Am. Chem. Soc., 73, 5658 (1951); 74, 753 (1951); 74, 753 (1952); 75, 683 (1953). 2 H. H. Jaffe, L. D. Freedman, G. O. Doak, J. Am. Chem. Soc., 76, 1548 (1954). 3 D. Pressman, D. H. Brown, J. Am. Chem. Soc., 65, 541 (1943); 75, 2209 (1953); 76, 1548 (1954). 4 A. Albeept, E. Ceржент, Константы ионизации кислот и оснований, М., 1964. 5 A. М. Лукин, Г. Б. Заварихина, Н. А. Болотина, Сборн. Методы получения хим. реактивов и препаратов, в. 22, 1970, стр. 11. 6 W. A. Jacobs, М. Heidelberger, J. Am. Chem. Soc., 40, 1580 (1918). 7 A. М. Лукин, И. Г. Калинина, Г. Б. Заварихина, ЖОХ, 30, 4072 (1960). 8 W. F. Forbes, I. R. Seckic, Canad. J. Chem., 36, 1371 (1958). 9 H. Gerding, J. Maarsen, D. Zijp, Rectav. chim., Pays-Bas, 77, 361 (1958). 10 H. М. Дятлова, Б. В. Жаданов, В. В. Медынцев, Сборн. Хим. реактивы и препараты, в. 30, 1970, стр. 292. 11 С. Б. Саввин, Арсеназо III, М., 1966. 12 А. М. Лукин, Н. А. Болотина, Г. Б. Заварихина, Сборн. Хим. реактивы и препараты, в. 30, 1970, стр. 292. 11 С. Б. Саввин, Арсеназо III, М., 1966. 12 А. М. Лукин, Н. А. Болотина, Г. Б. Заварихина, Сборн. Хим. реактивы и препараты, в. 30, 1970, стр. 50. 13 А. М. Лукин, Н. А. Болотина и др., ДАН, 173, 361 (1967).