
Journal of Optics

TRANSLATION

To the theory of total reflection*

To cite this article: Fedor I Fedorov 2013 J. Opt. 15 014002

 

View the article online for updates and enhancements.

Related content
Beam shifts for pairs of plane waves
Mark R Dennis and Jörg B Götte

-

Angular momentum balance and
transverse shifts on reflection of light
M A Player

-

Optics of anisotropic media
F V Ignatovich and Vladimir K Ignatovich

-

Recent citations
Roadmap on superoscillations
Michael Berry et al

-

Large centroid shifts of vortex beams
reflected from multi-layers
Mark T Lusk et al

-

Atoms in complex twisted light
Mohamed Babiker et al

-

This content was downloaded from IP address 132.174.251.2 on 03/01/2020 at 02:07

https://doi.org/10.1088/2040-8978/15/1/014002
http://iopscience.iop.org/article/10.1088/2040-8978/15/1/014015
http://iopscience.iop.org/article/10.1088/0305-4470/20/12/020
http://iopscience.iop.org/article/10.1088/0305-4470/20/12/020
http://iopscience.iop.org/article/10.3367/UFNe.0182.201207f.0759
http://iopscience.iop.org/2040-8986/21/5/053002
http://iopscience.iop.org/2040-8986/21/1/015601
http://iopscience.iop.org/2040-8986/21/1/015601
http://iopscience.iop.org/2040-8986/21/1/013001
http://googleads.g.doubleclick.net/pcs/click?xai=AKAOjssmwasBrmwBZEn213kkUzVPQN9vgNa8zAPFAxsvAOOMhzn9D7znfDLGleRqHM95PZ2BVbaFnt2W-W-p7btr1NVwryEmjpg5sH9eEPFIYrQPyNXQqsu1CaIpBfX-WSNWuAzXG3JLvsJq0vpo5ZI7ekyuDqITIpL1h4QoC6P56fBMVWj7nt4dH-BbqGp947RPNLNcw0Wjxq9QPr6WFHt9pns5S4B4TAocR7Gz91Va_0iDy9LY0El2&sig=Cg0ArKJSzNU3Gc1FDysx&adurl=http://iopscience.org/books


IOP PUBLISHING JOURNAL OF OPTICS

J. Opt. 15 (2013) 014002 (3pp) doi:10.1088/2040-8978/15/1/014002

TRANSLATION

To the theory of total reflection∗

Fedor I Fedorov

Physical Technical Institute, Academy of Sciences of the BSSR, BSSR

Received 8 June 2012, accepted for publication 11 July 2012
Published 9 January 2013
Online at stacks.iop.org/JOpt/15/014002

The effect of total reflection is of great fundamental interest
and it has been the objective of many theoretical and
experimental papers (e.g. [1]). However, all research is limited
to the case that the incident light is linearly polarized
perpendicular or in parallel to the plane of incidence. Only
Wiegrefe alone [5] has considered the case that the oscillation
azimuth χ of linear polarized incident wave is different from
0 or π/2. Already in this case some fundamental features
of this phenomenon, which are not observed in special cases
χ = 0 or π/2, are revealed. There are, however, mistakes in
this article [5], and its results remained almost unnoticed1. A
general case of total reflection for arbitrary elliptical incident
polarization has not been approached yet. Meanwhile, as
discussed below, its consideration allows one to discover
some fundamental, previously unknown properties of total
reflection.

As a consequence of the linearity of Maxwell equations
and boundary conditions, one can always expand incident,
reflected and refracted fields into a sum of corresponding
components that are parallel and perpendicular to the
plane of incidence. In case of partial reflection on the
boundary between transparent isotropic media, an analogous
representation also holds for the energy density w and the
Poynting vector P. However, in the general case, such a
decomposition for w and P is impossible, as soon as they are
quadratically dependent on E and H. It is this reason that
is responsible for the vital distinction of total reflection in
the general case of incident light polarization from the linear
polarization case at χ = 0 or π/2.

The relations of interest are expressed in the simplest and
most compact form when all calculations are made in vector

∗ Fedorov F I 1955 To the theory of total reflection Doklady Akademii Nauk
SSSR, 105, # 3, 465–8; received 9 December 1949. Presented by academician
Lebedev A A on 27 May 1955. Translated by D I Pustakhod 2012.
1 Paper [5], for example, is not cited in the review [1], its results are also
overlooked in the well-known M Born’s monograph [2], which contains a
misstatement in connection with this (see footnote 4).

form and not in component from. The Maxwell equations for
plane waves2

E = E0eiφ, H = H0eiφ,

φ = ω

(
t −

1
c

mr
)

(1)

in non-magnetic media take the form3

D = εE = −[mH], H = [mE] (m2
= ε). (2)

Here, m = nn is the refraction vector [3, 4]; n is the index of
refraction; n is the unit wave normal vector. The electric and
magnetic energy density and Poynting vector are expressed as

we =
ε

32π
(E+ E∗)2, wm =

1
32π

(H+H∗)2, (3)

P =
c

16π
[E+ E∗,H+H∗]. (4)

Denoting the incident, reflected and refracted waves
respectively by indices 0, 1, 2, one can write the geometrical
laws of reflection and refraction as

[m0h] = [m1h] = [m2h] = a, (5)

where h is the unit normal to the interface. Hence it follows
that

mi = [ha] + ηih, ηi = mihi, η1 = −η0,

η2 =

√
n2

2 − a2
(6)

(n0 = n1, n2 are the indices of refraction of either media). One
can write an electric field for each of three waves as

Ei = Aia+ Bi[n, a]. (7)

2 Translators note: in the original article the expression for the phase φ
appears to be misprinted and does not contain the scalar product mr between
the unit wave vector m and the position vector r. This has been amended in
the translation for the sake of clarity.
3 Translators note: Fedorov uses both [ab] and [a,b] to denote the vector or
cross product a× b.
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Fresnel equations for amplitudes Ai, Bi have the form

A0

a[m1m2]
=

A1

a[m2m0]
=
−A2

a[m0m1]
, (8)

B0/A0

n0n2
=

B1/A1

n1n2
=

B2/A2

n2n2
. (9)

Total reflection occurs when n2
2− a2

≤ 0, from which follows
that

m2 = m′ + im′′ = [ha] − iηh, η = +

√
a2 − n2

2. (10)

In this case the complex vector m2 will be nonlinear
([m2m2] 6= 0), whereas the refracted wave will be non-
uniform [4].

From (2) and (4) we have general relations for the energy
density and Poynting vector of a non-uniform wave in an
isotropic non-magnetic dielectric:

w = we + wm = w′ + w′′,

w′′ =
ε

16π
(E2
+ E∗2),

(11)

w′ =
1

16π
((ε + |m|2)|E|2 − |mE∗|2), (12)

P = P′ + P′′,

P′′ =
c

16π
(E2

· m+ E∗2 · m∗),
(13)

P′ =
c

16π
(|E|2(m+m∗)− [m−m∗, [EE∗]]). (14)

Obviously, quantities w′ and P′ do not contain the phase
factor eiφ , while w′′ and P′′ contain e±iφ . Therefore, for
mean values w and P we have: w = w′, P = P′. It can be
shown that linear polarization is determined by the constraint
[EE∗] = 0, whereas circular polarization is determined by
E2
= 0 [4]. But in general the oscillation ellipse semiaxes are

equal in magnitude and direction with the real and imaginary
components of vector

Er =

√
|E2|

E2 E. (15)

According to (13), vector P′′ traces an ellipse in the plane,
parallel to the plane of complex vector m2 =m′+im′′, i.e. the
plane of incidence. Using (15), one can make sure that the
ellipse semiaxes are proportional and parallel to m′ and m′′.
Hence, the total energy flux vector in the second medium
traces a cone twice during one period, which points into the
same direction from the plane of incidence as the vector P′.
From (14) it follows that in the general case of total reflection
the average energy flux in the refracted wave is not parallel
to the plane of incidence: it has a perpendicular component
associated with the term [m2 −m∗2, [EE∗]].4 This component
is equal to zero for the common reflection (m2 = m∗2) and
in the case that A0 = 0 or B0 = 0. Moreover, it disappears at

4 In Born’s monograph [2] it is mistakenly stated, that in total reflection
the energy flux in the second medium is directed in parallel to the plane of
incidence (p 62).

[EE∗] = 0, i. e. when vector E2 is linear [4]. According to (7)
and (9) this lateral flux also equals zero with the constraint
B∗0/A

∗

0
B0/A0

=
m∗2m0
m2m0

, which defines only the phase difference of
the components A0 and B0, while the modules ratio of these
components is unrestricted. Wiegrefe [5] was the first to pay
attention to the presence of a lateral flux in total reflection,
but only for the case of linearly polarized incident light5.
More generally, at a given incident wave energy and angle

of incidence the lateral flux peaks at
B∗0/A

∗

0
B0/A0

= −
m∗2m0
m2m0

, i.e. at
some elliptical polarization of the incident light. In the case of
linear polarization of the incident wave at χ = 45◦, the lateral
energy flux through a stripe of 1 cm width, that stretches in the
second medium from the interface to infinity and is parallel to
the plane of incidence, equals

S2 side = S0
λ0

2π

sin 2ψ
√

sin2ψ − n2

(1− n2)(tan2ψ − n2)
. (16)

Here, S0 is the incident wave energy flux through a
perpendicular area element of 1 cm2; λ0 is the optical
wavelength in the first medium expressed in centimeters; ψ
is the angle of incidence; n = n2/n1 is the relative index
of refraction. The lateral energy flux specified should lead
to a specific lateral light pressure, as far as the lateral flux
in the incident wave is nil, and therefore a corresponding
component of electromagnetic field momentum is not
conserved. However, in view of the fact that according to (16),
S2 side/S0 ∼ 10−5 for visible light, it is difficult to detect this
effect in practice.

It should be noted that as a consequence of the presence
of this lateral component, the reflected beam in the general
case of total reflection must be displaced not only along the
plane of incidence, which was confirmed by the experiments
of Goos and Hänchen [9], but also in a direction orthogonal to
the mentioned plane as well.

It follows from equations (14) and (10), that P′2h =
P2h = 0. Therefore, the mean energy flux into the second
medium is equal to zero, which allows one to speak about
the total reflection. Under these conditions the field presence
in the second medium in case of an infinite wave in time
and space is attributable to the term P′′2 (13), giving an
alternating energy flux through the interface, which averages
out to zero. However, in the case of a circularly polarized
refracted wave (E2

2 = E∗22 = 0) P′′2 = 0 and, therefore,
P′2h = 0, i.e. not only the average flux, but an instant
energy flux through the interface is equal to zero as well.
Here, the common explanation of the field presence in the
second medium becomes entirely inconsistent, showing the
fundamental inadequacy of the total reflection theory, which
ignores the boundedness of an incident wave in space or
time. From (7) to (9) and (15) it can easily be shown, that
this particular case occurs at an elliptical polarization of an
incident light such that the ratio of the oscillation ellipse

5 In article [5] it is mistakenly stated, that lateral energy flux is always
directed to the left from the plane of incidence, regardless of the direction
of polarization of linearly polarized incident light (p 470). In fact it follows
from (14), (7), and (9), that the direction of the lateral flux component reverses
as the incident light oscillation azimuth changes its sign.
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semiaxes equals the relative index of refraction and, therefore,
is independent of the angle of incidence. An angle χ between
the major axis of oscillation ellipse of the incident wave and
the incidence plane normal (a) is determined by

tan 2χ = ±
2η0ηn1n2

η2
0n2

2 − η
2n2

1

. (17)

χ = 0 in case of incidence at a critical angle of total reflection,
and χ = π/2 at glancing incidence. The phase difference δ of
the components A0 and B0 (B0/A0 = |B0/A0|eiδ) is given by
tan δ = ±a2/(η0η). In this case the oscillation ellipse of the
reflected wave has the same size, shape and direction of circu-
lation as that of the incident wave, differing only in sign of χ .

The dependence of the depth of light penetration into the
second medium from the incident wave polarization in total
reflection was discovered in the experiments of Quincke [6]
and Gall [7]. This dependency is entirely explained on the
basis of Eichenwald theory (e.g. see [8]), as far as Quincke
and Gall considered the standard case of linearly polarized

incident light at χ = 0 and π/2.6 It is evident, that an
analogous experimental study for the special case specified
above of elliptical polarization of the incident wave is of much
interest.
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