Доклады Академии наук СССР 1972. Том 206, № 6

КРИСТАЛЛОГРАФИЯ

А. И. КОМКОВ

ПОЛИМОРФНЫЕ СООТНОШЕНИЯ В СОЕДИНЕНИЯХ ТИПА $TRNbTiO_6$ И $TRTaTiO_6$

(Представлено академиком Н. В. Беловым 4 II 1972)

Было установлено (¹), что для соединений типа $TRNbTiO_6$ (TR = La, Ce и другие редкоземельные элементы), синтсзированных в гидротермальных условиях при сравнительно низких температурах и высоких давлениях, характерна структура типа эшинита, которая при нагревании на воздухе при $750-950^{\circ}$ C у соединений $TRNbTiO_6$ c атомными померами TR (Z_{TR}) от 64 до 74 ($GdNbTiO_6$, $TbNbTiO_6$, $DyNbTiO_6$, $ErNbTiO_6$, $TuNbTiO_6$, $YbNbTiO_6$ и $LuNbTiO_6$) переходила в структуру типа эвксенита; у соединений $TRNbTiO_6$ c Z_{TR} от 57 до 63 ($LaNbTiO_6$, $CeNbTiO_6$, $PrNbTiO_6$, $NdNbTiO_6$, $SmNbTiO_6$, $EuNbTiO_6$) перехода эшинит — эвксепит пе было обнаружено даже при нагревании их до 1300° C.

Зейферт и Бек (²) при синтезе соединений $TRNbTiO_6$ из расплава обнаружили также вторую модификацию типа эвксепита у $EuNbTiO_6$ и у $SmNbTiO_6$ ($Z_{Eu}=63$, $Z_{Sm}=62$). Важно было выяснить, существует ли у $EuNbTiO_6$ и у $SmNbTiO_6$ переход эшинит — эвксенит, который был установлен у соединений $TRNbTiO_6$ с атомными номерами TR от 71 до 64.

Выполненные в рентгеновской лаборатории нашего института дополнительные исследования показали, что эшинитовая модификация у EuNbTiO₆ и SmNbTiO₆ устойчива вилоть до их плавления (около 1500° C), которое является инконгруентным и сопровождается распадом указанных соединений соответственно на EuNbO₄ и TiO₂ и SmNbO₄ и TiO₂; последние при охлаждении расплавов с 1500° С до комнатной температуры могут образовывать соединения EuNbTiO₆ и SmNbTiO₆ со структурой типа эвксенита, обнаруженной у этих соединений в (2).

Однако исследования показали, что эвксенитовая модификация у $EuNbTiO_6$ и $SmNbTiO_6$ при температурах от $900-1400^\circ$ С вплоть до температуры плавления ($\sim 1500^\circ$ С) неустойчива и при длительном прокаливании в указанном интервале температур претерпевает превращение в эшинит. Удалось установить, что переход эвксенит — эшинит у $EuNbTiO_6$ и $SmNbTiO_6$ сопровождается экзотермическим эффектом и, следовательно, эвксенитовая фаза у этих соединений должна быть высокотемпературной, а эшинитовая низкотемпературной; а поскольку эвксенитовая модификация у $EuNbTiO_6$ и $SmNbTiO_6$ при высоких температурах неустойчива, то, очевидно, эту модификацию у указанных соединений следует считать метастабильной.

Исследования показали, что отмеченный выше переход эшинит — эвксенит у соединений $TRNbTiO_6$ с Z_{TR} от 64 до 71 является эндотермическим, а образующаяся у них при $750-950^{\circ}$ С структура типа эвксенита устойчива вплоть до плавления ($1500-1600^{\circ}$ С); при застывании расплава этих соединений образуется структура типа эвксенита *. Таким образом, в отличие от эвксенитовой модификации соединений $EuNbTiO_6$ и $SmNbTiO_6$, у соединений $TRNbTiO_6$ с Z_{TR} от 64 до 71 эвксенитовая модификация является стабильной формой их существования при высоких температурах.

^{*} Плавление соединений TRNbTiO $_6$ с $Z_{\rm TR}$ от 64 до 71 инконгруентно и сопровождается распадом на TRNbO $_4$ и TiO $_2$.

Следует отметить, что среди соединений $TRNbTiO_6$ с Z_{TR} от 57 до 63 эвксенитовая метастабильная модификация может возникать не только у EuNbTiO₆ и у SmNbTiO₆ и не только при высоких температурах в результате охлаждения расплава. Нам удалось обнаружить образование эвксенитовой модификации у EuNbTiO6, SmNbTiO6, NdNbTiO6, PrNbTiO6 и CeNbTiO₆ при нагревании в гидротермальных условиях при 500—550° С и давлении 50—80 кг/см² механической смеси эквивалентных количеств соответствующих гидроокислов редких земель, пиобия и титана; наблюдалось образование этой фазы у EuNbTiO₆, SmNbTiO₆ и NdNbTiO₆ из указанных механических смесей при нагревании их на воздухе при 700— 750° С. Температура перехода метастабильной эвксенитовой модификации у TRNbTiO₆ в стабильную эшинитовую тем ниже, а скорость перехода тем больше, чем меньше атомный номер ТВ. Если эвксенитовая модификация EuNbTiO₆, полученная при 750° C, обнаруживает заметную скорость перехода в эшинитовую модификацию при $\sim 1100^{\circ}\,\mathrm{C}$, то для SmNbTiO₆ этот переход заметен уже при температуре 950° С; для NdNbTiO₆ — при 750° С, а для PrNbTiO₆ и CeNbTiO₆ — при температурах ниже 650° С. Возможно, что у LaNbTiO₆ также существует метастабильная эвксенитовая модификация, но из-за низкой температуры и большой скорости перехода эвксенит — эшинит нам ее обнаружить не удалось.

Таким образом, из двух полиморфных модификаций (эпинитовой и эвксенитовой), установленных у соединений $TRNbTiO_6$, эпинитовая для всех указанных соединений независимо от атомного номера TR является низкотемпературной стабильной, а эвксенитовая высокотемпературной; последняя стабильна при высоких температурах для соединений $TRNbTiO_6$ с Z_{TR} от 64 до 71 включительно и метастабильна для $TRNbTiO_6$ с Z_{TR} от 57 по 63.

Проведенные нами исследования показали, что аналогичные закономерности характерны и для соединений $TRTaTiO_6$. Все $TRTaTiO_6$ независимо от Z_{TR} имеют низкотемпературную эшинитовую модификацию, которая может быть получена в условиях гидротермального синтеза в широком интервале температур (от 300 до 600° С) и давлений (от 200 до 2000 кг/cm^2). Соединения $TRTaTiO_6$ с Z_{TR} от 68 до 71 имеют, кроме того, стабильную высокотемпературную эвксенитовую модификацию, которая образуется при нагревании низкотемпературной эшинитовой модификации при $1200-1300^{\circ}$ С. У соединений $TRTaTiO_6$ с Z_{TR} от 57 до 66 также возможны эвксенитовые модификации, которые, однако, метастабильны; среди соединений этой группы $TRTaTiO_6$ нами были обнаружены эвксенитовые метастабильные модификации у DyNbTiO6, $TratiO_6$ и $GdTaTiO_6$ при нагревании на воздухе механических смесей эквивалентных количеств соответствующих окислов редких земель, тантала и титана при температурах ниже 1000° С.

В. Б. Александров (3) при изучении соединений $TRNbTiO_6$ и $TRTaTiO_6$, синтезированных при 1200° С, обнаружил, что эти соединения в зависимости от Z_{TR} имеют либо структуру типа эшинита (соединения $TRNbTiO_6$ с Z_{TR} от 57 до 63 и соединения $TRTaTiO_6$ с Z_{TR} от 57 до 66), либо структуру типа эвксенита (соединения $TRNbTiO_6$ с Z_{TR} от 64 до 71 и соединения $TRTaTiO_6$ с Z_{TR} 68 и 70). Очевидно, что обнаруженные В. Б. Александровым модификации у $TRNbTiO_6$ и $TRTaTiO_6$ характеризуют разновесные высокотемпературные формы этих соединений.

Всесоюзный научно-исследовательский геологический институт Ленинград

Поступило 20 XII 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. И. Комков, ДАН, 148, № 5 (1963). ² Н. Seifert, B. Beck, Neues Jahrb. Mineral. Abh., 103, Н. 1 (1965). ³ В. Б. Александров, ДАН, 153, № 3 (1963).