УДК 541.128.13 + 621.030.322 : 546.17

ФИЗИЧЕСКАЯ ХИМИЯ

Э. Э. РАЧКОВСКИЙ, А. В. ХАСИН, академик Г. К. БОРЕСКОВ, В. М. КОЛЧАНОВА, С. Н. ФИЛИМОНОВА

ИЗОТОПНЫЙ ОБМЕН АЗОТА НА ЖЕЛЕЗЕ

Сущность процесса активации азота на железных катализаторах синтеза аммиака пока еще неясна — пеизвестно происходит ли при этом адсорбция азота в молекулярной форме, или связь между азотными атомами разрывается ($^{1-2}$). По-видимому, наиболее прямым методом исследования этого вопроса является измерение скоростей реакций изотопного обмена азота. Куммер и Эмметт, исследовавшие изотопный обмен азота на образцах железа с добавками промоторов, пришли к заключению о большой скорости обмена в адсорбированном азоте (4). Но позже Морикава и Озаки, которые исследовали обмен на непромотированном железе, делают вывод, что азот на поверхности железа преимущественно находится в виде молекул, между которыми отсутствует обмен (5). В настоящей работе с целью выяснения характера адсорбированного азота измерялись на железе придавлениях азота $5 \div 25$ мм рт. ст. и температурах $340-400^\circ$ скорости реакций изотопного обмена азота:

гомомолекулярного обмена

$$N_2^{14} + N_2^{15} = 2N^{14}N^{15}, (1)$$

обмена адсорбированного азота с газообразным

$$N_{(anc)}^{15} + N_2^{14} = N_{(anc)}^{14} + N_2^{14} N_2^{15}$$
 (2)

Образцы железа готовили восстановлением водородом окиси железа Fe_2O_3 (10 г), полученной из химически чистых нитрата железа и аммиака. Восстановление проводили в статической циркуляционной установке с вымораживанием воды ловушками, охлаждаемыми при -78° , в течение 200 час. при 400° , затем образцы отпаивали в эвакупрованном состоянии, переносили на установку по изучению обмена и дополнительно обрабатывали водородом 20 час. при 400° . Образец II первые 20 час. восстанавливали при 350° . Величипу удельной поверхности образцов определяли по низкотемпературной адсорбции криптона (6) после исследования изотопного обмена азота.

По данным химического и спектрального апализов сумма примесей Li, Na, K, Ca, Al, Si, Mn, Cr в исследованных образцах железа не превышала 0,15%.

Изотопный обмен азота исследовали в статической циркуляционной установке, реакционное пространство которой объемом около 500 см³ было разделено четырехходовым краном на две примерно равные части. Изотопный анализ азота проводили на масс-спектрометре MB-2302 с надежным разрешением дублета ${\rm CO^+}$ и ${\rm N_2}^{14+}$. Отбор проб газа для анализа производили периодически при помощи игольчатого металлического крана. Исходный тяжелый азот с содержанием ${\rm N^{15}}$, равным $90\,\%$, получали из нитрата кальция путем его термического разложения и последующего разложения образующихся окислов азота на меди и никель-окиснохромовом катализаторе. Для опытов использовали неравновесную смесь изотопных молекул азота, содержащую около $50\,\%$ ${\rm N^{15}}$.

Перед измерением скорости реакций изотопного обмена железо длительное время (до 20 час.) выдерживали в азоте при данных температуре и давлении. При этом достигалось равновесие между газовой фазой и поверхностью железа. Скорость реакции (2) измеряли после того, как в адсорбдионном азоте была достигнута высокая концентрация тяжелого изотопа (до 50%) путем длительного выдерживания образца в соприкосновении с тяжелым газообразным азотом. Методика проведения данной реакции на исследованных образцах железа различалась. В опытах на образце I весь газообразный тяжелый азот откачивали из реакционного пространства и в него впускали азот с природным содержанием тяжелого азота. Откачивание производили при температуре опыта в течение 1 мин. При такой методике становится возможным очень точное измерение начальной скорости реакции, потому что начальная концентрация N¹⁵ в газовой фазе очень мала и, следовательно, велико ее относительное изменение в процессе реакции. Недостатком подобного метода является нарушение адсорбционного равновесия и связанная с этим возможность десорбции азота с поверхности железа. В опытах на образце II тяжелый азот заменяли легким только в половине реакционного пространства. Затем при помощи четырехходового крана сообщали обе части и вследствие циркуляции изотопный состав азота в течение 3-5 мин. выравнивался во всем реакционном пространстве. Таким образом, при неизменном химическом равновесии между газовой фазой и образцом изотопное равновесие между ними существенно нарушалось, благодаря чему становилось возможным измерение скорости изотопного обмена. Правда, из-за высокой начальной концентрации N¹⁵ в газообразном азоте (около 27%) точность измерения начального участка кинетической кривой была ниже, чем на образце I.

На рис. 1а приведены кривые нарастания концентрации тяжелого изотопа азота в газовой фазе при протекании реакции изотопного обмена адсорбированного азота с газообразным на образде II. Точка на вертикальной оси показывает содержание $\mathrm{N}^{\scriptscriptstyle 15}$ в газообразном азоте, который перед опытом находился в изотопном равновесии с адсорбированным азотом. В опытах было достигнуто изотопное равновесие между адсорбированным и газообразным азотом, поэтому можно было определить по уравнению материального баланса число адсорбированных в этих условиях молекул азота. Оно составляет при 350° 0,37 · 10¹⁵ и при 310° 0,38 · 10¹⁵ молек/см². Если принять, что число атомов азота в 1 см² монослоя равно среднему от числа атомов железа на гранях 100, 110 и 111, т. е. 1,2 · 10¹⁵, то найденная величина отвечает 0,62-0,63 монослоя. Результаты измерений, представленные в координатах уравнения первого порядка (7), хорошо укладываются в прямые линии (рис. 1б). Отсюда можно заключить, что в исследованных условиях адсорбированный на железе азот равноценен в отношении обмена с газообразным. На рис. 2 показано изменение концентраций изотопных молекул $N^{15}N^{15}$ и $N^{14}N^{15}$ в газовой фазе в одном из опытов, показанных на рис. 1 (350°). Результаты измерений представлены точками, а плавные кривые вычислены в предположении, что обмен совершается путем адсорбции и десорбции, причем десорбирующийся газ находится в равновесии по отношению к реакции (1). Кинетическое уравнение для C_{30} (τ) имеет вид (8)

$$\begin{split} &C_{30} = \exp\left(-\frac{v}{N_{\mathrm{r}}}\,\mathbf{\tau}\right)\left(C_{30}^{0} + C^{\infty}\right)^{2}\,\left(\exp\left(\frac{v}{N_{\mathrm{r}}}\,\mathbf{\tau}\right) - 1\right) - \frac{2N_{\mathrm{a}}}{N_{\mathrm{r}}}\,C^{\infty}\left(C_{\mathrm{a}}^{0} - C_{\infty}\right) \times \\ &\times \left(\exp\left(-\frac{v}{N_{\mathrm{a}}}\,\mathbf{\tau}\right) - 1\right) - \frac{N_{\mathrm{a}}}{2N_{\mathrm{r}} + N_{\mathrm{a}}}\left(C_{\mathrm{a}}^{0} - C^{\infty}\right)^{2}\left(\exp\left(-\frac{v\left(2N_{\mathrm{r}} + N_{\mathrm{a}}\right)}{N_{\mathrm{r}}N_{\mathrm{a}}}\,\mathbf{\tau}\right) - 1\right), \end{split}$$

где v — скорость обмена; τ — время, C_{30} — содержание молекул $N^{15}N^{15}$ в газовой фазе; $N_{\rm r}$ и $N_{\rm a}$ — число молекул азота в газовой фазе и в адсорбированном состоянии; $C_{30}{}^{0}$ — начальное содержание молекул $N^{15}N^{15}$ в газо-

вой фазе; $C_{\rm a}{}^{0}$ — начальное содержание тяжелого изотопа в адсорбированном азоте; C^{∞} — содержание тяжелого изотопа в системе при равновесии.

Совпадение экспериментальных и вычисленных зависимостей очень хорошее. Это говорит о большой скорости обмена в адсорбированном азоте, по сравнению с которым адсорбция и десорбция молекул азота оказываются медленными процессами. Скорость гомомолекулярного обмена вычисляли

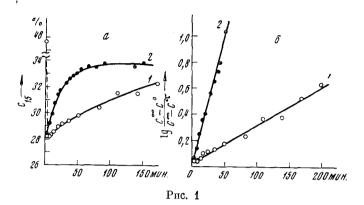
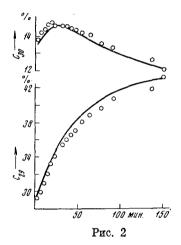



Рис. 1. Нарастание концентрации N^{15} в газовой фазе в опытах по обмену адсорбированного азота с газообразным при давлении азота 15 мм рт. ст. и температурах: $I-310^\circ$ за 60 час.; $2-350^\circ$ за 20 час.; C° , C^∞ , C^τ — концентрация N^{15} в начальный момент, при равновесии и во время τ соответственно Рис. 2. Изменение концентрации молекул $N^{15}N^{15}$ и $N^{14}N^{15}$ в газовой фазе в опыте при 350° С (тот же опыт, что и на рис. 1). Кружки — экспериментальные точки, кривые — вычислены

по уравнению первого порядка (9). Кинетические характеристики исследованных реакций изотопного обмена приведены в табл. 1, из которой видно, что начальные скорости обмена между адсорбированным и газообразным азотом совпадают со скоростями гомомолекулярного обмена азота. Кажущаяся энергия активации для реакции гомомолекулярного изотопного обмена азота составляет 31 ± 1 ккал/моль и практически равна энергии акгивации обмена адсорбированного азота с газообразным. Таким образом, можно сделать заключение, что обе реакции изотопного обмена азота на железе совершаются по адсорбционно-десорбционному механизму. Можно сформулировать общий результат настоящего исследования: адсорбированный на железе азот в исследованных условиях образует однородный адсорбционный слой, обмен в котором совершается намного быстрее, чем адсорбция и десорбция молекул азота. Найденной картине обмена, вероятней всего, соответствует диссоциативный механизм адсорбции азота на железе. Морикава и Озаки получили на непромотированном железе в том же температурном интервале иной результат. Расхождение может быть связано с более высоким давлением азота (375 мм рт. ст.), при котором Морикава и Озаки исследовали изотопный обмен.

Активности исследованных нами образцов железа различались между собой. Более низкая активность образца I, возможно, связана с более высокой начальной температурой восстановления.

Интересно с помощью полученных экспериментальных данных оценить энергию связи адсорбированного азота. Возможность такой оценки в данном случае вполне реальна, так как адсорбированный азот однороден и из-

Таблица 1 Кинетические характеристики реакций гомомолекулярного изотопного обмена азота (1) и обмена адсорбированного азота с газообразным (2) на железе

Образец	Реакция (2)				Реакция (1)				
	r-pa, °C	давление, мм рт. ст.	нач. уд. скорость об- мена×10-и, молек/см²-сек	кажущаясн энергия активации, ккал/моль	r-pa, °C	давление, мм рт. ст.	ун. скорость обмена×10-и, молек/см²•сек	порядок реакции в отношении давления азота	кажущанся энергия активации, ккал/моль
${\cal S}_{{f y}{f I}}\stackrel{{f I}}{=} 4~{f M}^2/{f \Gamma}$	400 350	14,5 14,5	1,48 0,294	27	400 400 400 350 350	15 4,5 25 15,5 4,5	1,65 0,90 2,10 0,243 0,135	0,5	32
$S_{yg} = \frac{II}{5 \text{ M}^2/\Gamma}$	350 310	15 14,5	1,84 0,275	33	350 350 310 310	15,5 8,8 15 5	1,58 1,08 0,279 0,176	\ \\ 0,5 \\ 0,4 \\	31

вестна его поверхностная концентрация. Методом теории абсолютных скоростей реакций (10) можно приближенно вычислить энергию активации десорбции азота, пользуясь измеренными значениями скоростей обмена, которые при адсорбционно-десорбционном механизме обмена одновременно являются и скоростями десорбции. На основании полученного значения скорости обмена при 350° и 15 мм рт. ст., равного $1.58 \cdot 10^{11}$ молек/сек \cdot см 2 и найденной концентрации адсорбированного азота, равной $0.37 \cdot 10^{15}$ молек/см 2 , находим, что энергия активации десорбции $E_{\pi} = 47$ ккал/моль. С помощью известного соотношения между кажущейся энергией активации E, энергией активации десорбции E_{π} , порядком обмена в отношении давления азота n и теплотой адсорбции q (11) $E = E_{\pi} + (1 - n)q$ находим, что $E_{\pi} = 15$ ккал/моль и q = 32 ккал/моль. Таким образом, адсорбционному равновесию азота на железе при 350° и 15 мм рт. ст. соответствует дифференциальная теплота адсорбции около 32 ккал/моль, концентрация адсорбированных частиц, равная $0.37 \cdot 10^{15}$ молек/см 2 , и энергия активации адсорбированных частиц, равная $0.37 \cdot 10^{15}$ молек/см 2 , и энергия активации адсорбции 15 ккал/моль.

Институт катализа Сибирского отделения Академии наук СССР Новосибирск Поступило 10 V 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ A. Nielsen, An Investigation on Promoted Iron Catalysts for the Synthesis of Ammonia, Copenhagen, 1968. ² A. Nielsen, Catalysis Rev., 4, № 1, 1 (1970). ³ R. Brill, Ber. Bunsenges, 75, № 5, 455 (1971). ⁴ J. T. Kummer, P. H. Emmet, J. Chem. Phys., 19, № 3, 289 (1951). ⁵ Y. Morikawa, A. Ozaki, J. Catalysis, 12, № 2, 145 (1968). ⁶ М. И. Темкин, ЖФХ, 29, № 9, 4610 (1955). ⁷ Г. К. Боресков, А. В. Хасин, Т. С. Старостина, ДАН, 164, № 3, 606 (1965). ⁸ А. В. Хасин, Г. К. Боресков, Т. С. Старостина, Методы исследования катализаторов и каталитических реакций, 1, Новосибирск, 1965, стр. 342. ⁹ М. А. Авдеенко, Г. К. Боресков, М. Г. Слинько, Проблемы кинетики и катализа, 9, 61 (1957). ¹⁰ С. Глесстон, К. Лейдлер, Г. Эйринг, Теория абсолютных скоростей реакций, ИЛ, 1948. ¹¹ М. Теткіп, Acta physicochim. URSS, 2, № 3, 313 (1935).