
УДК 541.128 <u>ХИМИЯ</u>

Академик АН БССР Б. В. ЕРОФЕЕВ, В. А. ПЛАХОТНИК

АНТИИНГИБИРУЮЩЕЕ ДЕЙСТВИЕ НИТРОФОРМА НА РАЗЛОЖЕНИЕ ПЕРЕКИСИ ВОДОРОДА ПОД ДЕЙСТВИЕМ АКВАИОНОВ Fe(III), ИНГИБИРОВАННОЕ ТЕТРАНИТРОМЕТАНОМ

Разложение перекиси водорода под действием акваионов Fe(III) ингибируется тетранитрометаном (ТНМ) (¹). При применении ТНМ для этой цели в нашей работе показано, что величина индукционного периода разложения перекиси водорода пропорциональна [ТНМ] только при [ТНМ] ≤ 10⁻⁴ мол/л. При больших концентрациях мы обнаружили, что индукционный период или, точнее, период расходования (п.р.) увеличива-

ется медленнее, чем [ТНМ], так что скорость расходования ТНМ возрастает. Этот эффект естественно приписать одному из продуктов реакции. Так как в (¹) указано на образование

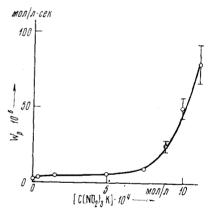


Рис. 1

Рис. 2

Рис. 1. Кривые газовыделения при ингибированном тетранитрометаном (THM) разложении перекиси водорода акваионами Fe(III) в зависимости от концентрации нитроформа (HФ). [H_2O_2] = 1,2 мол/л, Fe(III) = 6,7·10⁻³ г-ион/л, [H^+] = 8,7·10⁻² г-ион/л, [THM] $_0$ = 2,50·10⁻³ мол/л, μ = 0,16, [$H\Phi$] (10^{-4} мол/л): I и 7 — 0; 2 — 0,34; 3 — 1,50; 4 — 4,90; 5 — 7,40; 6 — 11,10; 7 — [пропенол] = 10^{-3} мол/л

Рис. 2. Влияние добавок нитроформиата калия на скорость расходования ТНМ. Условия опытов те же, что указаны в подписи к рис. 1

нитроформа (НФ) из ТНМ, мы исследовали разложение перекиси водорода под действием Fe(III), ингибированное тетранитрометаном, в присутствии НФ. Оказалось, что НФ действительно сокращал п.р., увеличивая скорость расходования ТНМ. Можно поэтому обозначить этот эффект как антиингибирующее действие НФ.

Все использованные реактивы, кроме ТНМ, НФ и перекиси водорода, имели квалификацию х.ч. Перекись водорода (95%) получалась фракцио-

нированной вакуум-перегонкой пергидрола. ТНМ был приготовлен (²) из уксусного ангидрида и азотной кислоты, очищен промыванием водой и перегонкой с паром, высушен ангидроном. Применялись только свежеприготовленные водные растворы ТНМ, концентрация которого устанавливалась методами, описанными в (3). НФ вводился в реагирующий раствор в виде соли калия, приготовленной из едкого кали и ТНМ, растворенных в абсолютном этаноле. Промытая этанолом, эфиром и н-гептаном и высущенная в вакууме соль сохранялась при 0°. Концентрация НФ определялась спектрофотометрически ($\lambda = 350$ мµ, $\varepsilon = 14600$ (3)). Все растворы готовились с применением как бидистиллята, освобожденного от органических примесей щелочным раствором перманганата, так и воды, деминерализованной с помощью смол КУ-2 и ЭДЭ-10П. В обоих случаях продолжительность п.р. ТНМ была одной и той же. Процедура определения скорости расходования ТНМ состояла в быстром введении перекиси водорода в термостатированную при 25° и перемешиваемую магнитной ме-шалкой смесь Fe(III) + HClO₄ + THM. Окончание п.р. ТНМ находили из графика (рис. 1) по точке, в которой начинается увеличение скорости газовыделения.

На рис. 1 представлены кривые газовыделения в смеси Fe(III) + + $HClO_4$ + THM без и с добавкой разных количеств $H\Phi$. В отсутствие $H\Phi$ на кривой I можно заметить два перегиба, соответствующих прямолинейным участкам от 0 до 10 и от 10 до 16 мин. Второй из этих участков, очевидно, соответствует разложению перекиси в присутствии уже заметного количества $H\Phi$, образовавшегося в ходе реакции. Заметим, что этот второй участок идет практически параллельно начальным прямолинейным участкам кривых 2 и 3, полученных с начальными концентрациями $H\Phi$ 0,34 и 1,50·10⁻⁴ мол/л. Наклон этих участков характеризует скорость

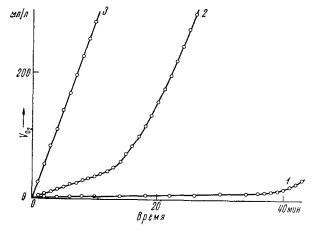


Рис. 3. Сокращение времени расходования ТНМ в присутствии НФ, образовавшегося за 13 час. в растворе ТНМ (5,7 · 10^{-3} мол/л, pH 5). [H_2O_2] = 0,5 мол/л, [Fe(III)] = 10^{-3} г-ион/л, [H⁺] = 1,37 · 10^{-2} г-ион/л, [THM] $_0$ = 1,8 · 10^{-4} мол/л, μ = 0,10 (NaNO₃). I — свежеприготовленный раствор ТНМ, 2 — гидролизованный, [НФ] \sim $\sim 3 \cdot 10^{-8}$ мол/л, 3 — неингибированное разложение H_2O_2 (контроль)

расходования ТНМ. Непосредственное измерение концентрации НФ по оптической плотности при 420 м μ ($\epsilon=620$) показало, что по истечении 10 мин. с момента смешения реагентов в пробах, взятых из реагирующего раствора, в обоих опытах содержится практически одинаковое количество НФ, а именно $8-10\cdot10^{-4}$ мол/л. Эти значения примерно в 3 раза больше количества НФ, внесенного в реакционную смесь в опыте 2. Поэтому естественно, что ход кривых 1 и 2 па некотором участке соответствует одина-

ковой скорости расходования ТНМ. При увеличении количества НФ в опыте 3 до $1.50 \cdot 10^{-4}$ мол/л период расходования ТНМ, определяемый прямолинейным участком кривой, заметно сократился до 11 вместо 16 мин. в опыте 2, что примерно соответствует увеличению количества НФ. Лишь в опытах 4-6, в которых добавка НФ составляла от 4.90 до $11.10 \cdot 10^{-4}$ мол/л, т. е. от 50 до 150% от количества НФ, образующегося в ходе опыта, наблюдается резкое сокращение п.р. ТНМ. Из величины п.р. были рассчитаны скорости расходования ТНМ, которые представлены на рис. 2 в виде функции от количества добавленного НФ. На рисунке нанесены также точки из дополнительных опытов, не приведенных на рис. 1. Резкий подъем кривой на рис. 2 соответствует, таким образом, количеству НФ, вводимого в начале опыта, которое сравнимо с количеством НФ, образующегося за время п.р.

При более низких концентрациях ТНМ и других реагентов влияние НФ становится даже еще более сильным, как видно из рис. 3, где приведены данные опытов со свежеприготовленными и с частично гидролизованными

растворами ТНМ.

Для понимания механизма образования НФ в ходе ингибированного разложения перекиси водорода имеет значение результат опыта 7, проведенного с добавкой аллилового спирта в количестве 10^{-3} мол/л, а в остальном в условиях опыта 1 (рис. 1). Как видно из последнего, в присутствии аллилового спирта п.р. заметно больше, что следует рассматривать как результат взаимодействия спирта с одним из типов радикалов, ведущим к превращению ТНМ в НФ. Так, известно, что аллиловый спирт является акцептором радикалов ОН (4). Если предположить, что образование НФ происходит в результате реакций

$$C(NO_2)_4 + \dot{O}H \rightarrow H^+ + NO_3^- + \dot{C}(NO_2)_3,$$
 (1)

$$\dot{C}(NO_2)_3 + H_2O_2 \rightarrow H^+ + [C(NO_2)_3]^- + H\dot{O}_2,$$
 (2)

то удаление радикалов ОН вследствие их взаимодействия со спиртом будет тормозить реакции (1) и (2). Тогда образование НФ будет также замедляться, а расходование ТНМ будет происходить с меньшей скоростью.

Следует учесть, что НФ может образовываться, правда сравнительно медленно, в результате гидролиза (3), приводя к сокращению п.р. Гидролизованные растворы ТНМ содержат НФ в количестве $10^{-4} \div 10^{-2} \%$ от [ТНМ] $_0$ и, вероятно, при малых [ТНМ] в системе Fe(III) ас — H_2O_2 НФ может играть роль антиингибитора (рис. 3).

Институт общей и неорганической химии им. Н. С. Курнакова Академии наук СССР Москва Поступило 21 IV 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. П. Пурмаль, Докторская диссертация, ИХФ АН СССР, **1**, 1970, стр. 61. ² Е. Ю. Орлова, Химия и технология бризантных взрывчатых веществ, М., 1960, стр. 222. ³ А. Henglein, J. Jaspert, Zs. Phys. Chem., (Frankfurt), **12**, 324 (1957); J. Rabani, W. A. Mulac, M. S. Matheson, J. Phys. Chem., **69**, 53 (1965). ⁴ А. К. Пикаев, Б. Г. Ершов, Усп. хим., **36**, 1427 (1967).