Доклады Академии наук СССР 1973. Том 208, № 1

УДК 513.3.731

MATEMATHKA

Член-корреспондент АН СССР А. В. ПОГОРЕЛОВ

полное решение четвертой проблемы гильберта

Когда говорят о четвертой проблеме Гильберта, обычно имеют в виду определение всех метризаций проективного пространства, для которых прямые являются геодезическими (¹). Решение проблемы Гильберта в этом смысле для достаточно регулярных метрик было дано Гамелем (²). В данной работе эта проблема решается без каких-либо дополнительных предположений.

- 1. Пусть P проективное пространство, X произвольное множество точек пространства и πX множество плоскостей пространства, пересекающих X. Будем обозначать через σ любую неотрицательную вполне аддитивную функцию, заданную на множестве плоскостей пространства P и удовлетворяющую условиям:
 - 1) $\sigma(\pi X) = 0$, если X состоит из одной точки,
 - 2) $\sigma(\pi X) > 0$, если X содержит континуум.

С помощью функции σ мы определяем измерение отрезков прямых следующим образом. Длиной отрезка xy будем называть число $|xy| = \sigma(\pi xy)$. Очевидно, определяемая таким образом длина отрезка обладает обычными свойствами. Именно, |xy| > 0, |xy| = |xz| + |yz|, если z— точка отрезка xy.

Введем теперь метрику в пространстве P, полагая $\rho(x, y)$ равным длине меньшего из отрезков xy, на которые точки x и y разбивают прямую xy. Определяемая так метрика удовлетворяет аксиомам метрического пространства: $\rho(x, y) = \rho(y, x)$, $\rho(x, y) \geqslant 0$, причем равенство имеет место только при $x \equiv y$, $\rho(x, y) \leqslant \rho(x, z) + \rho(z, y)$. Выполнимость первых двух аксиом непосредственно вытекает из определения метрики. Проверим выполнимость третьей аксиомы (перавенство треугольника).

В случае, если три точки x, y, z лежат на одной прямой, неравенство треугольника следует из аддитивности длины отрезка и определения расстояния между точками как длины меньшего из отрезков, соединяющих эти точки. В случае, если точки x, y, z не лежат на одной прямой, неравенство треугольника следует из предложения Паша. Действительно, пусть xyz — проективный треугольник и его стороны xz и yz являются меньшими отрезками соответствующих прямых xz и yz. Согласно предложению Паша, плоскость α , пересекающая сторону xy треугольника, пересекает по крайней мере одну из двух других сторон xz, yz. Поэтому $\pi xy = \pi xz + \pi yz$. Следовательно, $|xy| \le |xz| + |zy|$. Но $\rho(x, z) = |xz|$, $\rho(y, z) = |yz|$, а $\rho(x, y) \le |xy|$. Отсюда $\rho(x, y) \le \rho(x, z) + \rho(y, z)$, что и требовалось доказать.

Метрику в пространстве P, задаваемую с помощью функции σ , будем называть σ -метрикой (3).

Если значение функции σ на множестве всех плоскостей πP пространства конечно, то σ -метрика определена во всем пространстве. Величина $\sigma(\pi P)$ имеет простой геометрический смысл. Это длина прямых в σ -метрике. Если же $\sigma(\pi P) = \infty$, то σ -метрика определена в некоторой выпуклой области G пространства P. Действительно, пусть a — фиксированная точка пространства P. Обозначим через G множество таких точек x,

шля которых $\rho(a, x) < \infty$. Множество G выпуклое. В самом деле, если x, z = G, то $\rho(x, y) < \infty$. Следовательно, точки x, y соединяются отрезком глины $\rho(x, y)$. Для каждой точки z этого отрезка $\rho(a, z) \le \rho(a, x) + (x, y) < \infty$, т. е. отрезок \overline{xy} принадлежит G. А это обозначает выпуклють G. Область G нельзя расширить, сохраняя конечность расстояний.

Покажем, что прямые в G являются геодезическими. Действительно, тусть g— прямая (или отрезок прямой) в G. Пусть x— внутренняя точка g. Из свойств функции g следует существование отрезка g сколь угодно излой длины с внутренней точкой g. Можно считать, что g0 (g0, g1) — теюда следует, что отрезок g2 является кратчайшей соединяющей точки g2. g3 это значит, что g4— геодезическая.

Теорема 1. В проективном пространстве любая непрерывная метриза. для которой прямые являются геодезическими, есть о-метрика.

Непрерывность метрики надо понимать как непрерывность функции

(x,y). Доказательство теоремы 1 приводится в п. 4.

2. Будем интерпретировать проективное пространство P как эвклидово пространство с прямоугольными декартовыми координатами x_i , пополненное несобственными (бесконечно удаленными) элементами. Метрику в пространстве P, для которой прямые являются геодезическими, будем называть и рое к т и в н о й. Проективную метрику будем называть регулярная функция, положительно однородная первой степени, выпуклая и четная по \dot{x} . Не ограничивая общности, в качестве параметра t будем брать эвклидову дугу.

Теорема 2. Регулярная проективная метрика является о-метрикой. Ее линейный элемент допускает представление

$$ds = \int_{\omega} \gamma(\xi, x\xi) |\xi dx| d\xi, \qquad (*)$$

где $\gamma(\xi, x\xi)$ — неотрицательная функция, а интегрирование выполняется по площади единичной сферы ω : $|\xi|=1$. Функция σ , задающая эту метрику, определяется равенством $d\sigma=\gamma(\xi,p)dp$ $d\xi$, где p и ξ — коэффициенты в уравнении плоскости $x\xi-p=0$.

Доказательство. Рассмотрим подробно двумерный случай (P – плоскость). Пусть $ds = F(x, \dot{x}) dt$ – линейный элемент проективной метрики. Так как геодезическими являются прямые, то уравнение Эйлера для функции F имеет вид

$$\partial F / \partial x_h - \dot{x}_\alpha \partial^2 F / \partial \dot{x}_h \partial x_\alpha = 0.$$

Дифференцируя это уравнение по \dot{x}_k , получим $\dot{x}_\alpha \partial \left(\partial^2 F / \partial \dot{x}_k^2\right) / \partial x_\alpha = 0$. Пусть g — произвольная прямая. Примем ее за ось x_i . Тогда вдоль этой прямой, т. е. при $x_2 = 0$, $\dot{x}_2 = 0$, $\partial \left(\partial^2 F / \partial \dot{x}_2^2\right) / \partial x_i = 0$. Следовательно, $\partial^2 F / \partial \dot{x}_2^2$ не зависит от x_i и является, таким образом, функцией прямой g. Обозначим эту функцию $\gamma(g)$.

Построим регулярную о-метрику, задаваемую функцией распределения $\gamma(\xi, x\xi) = \gamma(g)$ по формуле (*). Пусть $ds = F_1(x, \dot{x})dt$ — ее ленейный элемент. Для доказательства теоремы достаточно показать, что $F = cF_1$, где c—постоянная.

Возьмем малый равнобедренный треугольник ABC с основанием AB на прямой g, равным δ , и малыми углами при основании, равными α . Величину |AC|+|BC|-|AB| можно выразить двумя способами: через функцию F_1 и функцию распределения γ . При малых α и δ эти выражения будут $\sim c_1 \delta \alpha^2 \partial^2 F_1 / \partial \dot{x}_2^2$ и $c_2 \delta \alpha^2 \gamma(g)$, где c_1 и c_2 —постоянные. Переходя к пределу при $\delta \to 0$, а затем $\alpha \to 0$, получаем связь между функциями F_1 и γ . Именно, $\gamma = c \partial^2 F_1 / \partial \dot{x}_2^2$, где c—постоянная. Следовательно, $\partial^2 F / \partial \dot{x}_2^2 = c \partial^2 F_1 / \partial \dot{x}_2^2$. Отсюда, ввиду произвола прямой g и точки на ней, к которой стягивается треугольник ABC при переходе к пределу,

функции F и cF, отличаются только линейным относительно \dot{x} слагаемым. А так как обе функции четные, то это слагаемое равно нулю и, следовательно, $F = cF_1$, что и требовалось доказать.

В трехмерном случае доказательство аналогично. Связь функций $F_{\mathbf{a}}$

и у (а) имеет вид

$$\partial^2 F_1/\partial \dot{x}_2{}^2 = c \int_{-\pi/2}^{\pi/2} \gamma (\alpha) \cos \vartheta \, d\vartheta.$$

Здесь x_2 лежит в плоскости треугольника ABC, ϑ — угол между плоскостью α , проходящей через прямую g, и плоскостью треугольника. Из этого уравнения находится γ через F_4 .

3. Если метрики $\rho_1(x,y)$ и $\rho_2(x,y)$ проективные, то при λ , $\mu>0$ метрика $\rho(x,y)=\lambda\rho_1(x,y)+\mu\rho_2(x,y)$ также проективная. Это соображение

является основным в показательстве слепующей теоремы.

Теорема 3. Любая непрерывная проективная метрика допускает приближение регулярными проективными метриками, равномерное в любой компактной области.

Доказательство. Рассмотрим двумерный случай. Пусть $\rho(x, y)$ — ланная проективная метрика. Положим

$$\rho_{\delta}(x,y) = \lambda \int_{|r| < \delta} \varphi(r) \rho(x+r,y+r) dr,$$

где $\varphi(r) = \exp(r^2 - \delta^2)^{-1}$ при $|r| < \delta$, $\varphi(r) = 0$ при $|r| \ge \delta$,

$$\lambda \int \varphi(r) dr = 1.$$

Метрика ρ_{δ} получается из данной метрики путем усреднения по сдвигам на вектор r, а следовательно, проективна. Положим

$$F_{\delta}(x,\xi) = \lim_{h\to 0} \frac{1}{h} \rho_{\delta}(x,x+\xi h), \quad |\xi| = 1.$$

Мы утверждаем, что функция F_b существует при любых x, ξ и допускает равномерную оценку в компактной области. В самом деле, рассмотрим функцию $\rho_b(x+a\xi,x)$, $a\geq 1$. Эта функция дифференцируема по x. Она монотонна по a и поэтому дифференцируема по a почти всюду. Ввиду ограниченности ρ_b в компактной области, найдется $a' \leq a$, для которого производная $\rho_b(x+a\xi,x)$ по a существует и допускает равномерную оценку. Отсюда, ввиду дифференцируемости этой функции но x, получается дифференцируемость функции $\rho_b(x+a'\xi,x+\xi h)$ по h при h=0, т. е. существование $F_b(x,\xi)$ и оценка для нее.

Очевидно, метрика, задаваемая линейным элементом $ds = F_b(x, \dot{x}) dt$, совпадает с метрикой ρ_b . Усредним теперь методику ρ_b , полагая

$$F_{\delta\varepsilon}(x,\xi) = \lambda \int_{|r|<\varepsilon} \varphi(r) F_{\delta}(x+r,\xi) dr.$$

Метрика $\rho_{\delta e}$, задаваемая линейным элементом $F_{\delta e}(x, \dot{x}) dt$, снова будет проективной. Функция $F_{\delta e}(x, \xi)$ регулярна по x. Остается обеспечить регулярность по ξ .

Обозначим через A_{ϑ} поворот относительно начала координат на угол ϑ . Положим

$$F_{\delta\varepsilon\alpha}\left(x,\dot{x}\right)=\lambda\int\limits_{|\theta|<\alpha}\phi\left(\vartheta\right)F_{\delta\varepsilon}\left(A_{\theta}x,A_{\theta}\dot{x}\right)d\vartheta.$$

Метрика $\rho_{\delta \epsilon \alpha}$, задаваемая линейным элементом $F_{\delta \epsilon \alpha}(x, \dot{x}) dt$, проективна. Вместе с тем она регулярна, так как функция $F_{\delta \epsilon \alpha}(x, \dot{x})$ регулярна по

обеим переменным. Ввиду непрерывности исходной метрики $\rho(x, y)$, метрика $\rho_{\text{Ne}\alpha}(x, y)$ при достаточно малых δ , ε и α равномерно приближает метрику $\rho(x, y)$ в данной компактной области. Что и требовалось доказать. Доказательство теоремы в трехмерном случае аналогично.

4. Доказательство теоремы 1. Пусть $\rho(x, y)$ — данная проективная метрика. По теореме 3, существует последовательность регулярных проективных метрик $\rho_n(x, y)$, сходящаяся к метрике $\rho(x, y)$ равномерно в любой компактной области. По теореме 2, метрика $\rho_n(x, y)$ является σ -метрикой. Пусть σ_n — вполне аддитивная функция, задающая метрику ρ_n .

Пусть G — компактная область, X — произвольное множество в G диаметра меньше δ (в метрике ρ). Из равномерной сходимости метрик ρ_n к ρ в G следует, что при достаточно больших n — $\sigma_n(\pi X)$ мало вместе с δ . Отсюда следует, что из последовательности функций σ_n можно выделить слабо сходящуюся последовательность. Предельная функция $\sigma = \lim \sigma_n$, очевидно, задает данную метрику. Теорема доказана.

Физико-технический институ: пизких температур Академии паук УССР Харьков Поступило 3 VIII 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

³ Г. Буземан, УМН, **21**, в. 1 (1966). ² G. Hamel, Math. Ann., **57** (1903). ³ H. Buseman, Ann. mat. pura ed appl., 55 (1961).