УДК 539.4:541.182.022

ФИЗИЧЕСКАЯ ХИМИЯ

Е. А. АМЕЛИНА, А. М. ПАРФЕНОВА, Е. Д. ЩУКИН, академик П. А. РЕБИНДЕР

ИЗУЧЕНИЕ ФОРМИРОВАНИЯ КРИСТАЛЛИЗАЦИОННЫХ КОНТАКТОВ, ВОЗНИКАЮЩИХ ПРИ СЛЕЖИВАНИИ КРИСТАЛЛИЧЕСКИХ ПОРОШКОВ

Индивидуальные контакты являются по существу главным параметром дисперсных пористых структур, определяющим все их физико-химическое поведение. Варьирование прочности индивидуальных контактов в широком интервале (от слабых коагуляционных контактов, прочность которых пе превышает $10^{-4}-10^{-5}$ дин, до прочных «фазовых» кристаллизационных контактов с прочностью от $\sim 10^{-2}$ дии) приводит не только к широкому изменению прочности дисперсных структур (количественным изменениям), по и к качественным изменениям структур — от тиксотропных коагуляционных структур к сыпучим порошковым материалам и к прочным дисперсным пористым телам.

Изучению формирования и структурцых особенностей коагуляционных контактов и, соответственно, коагуляционных структур $\binom{1-4}{2}$, адгезионных контактов при адгезни пыли и порошков (5), кристаллизационных и фазовых контактов, возникающих при твердении минеральных вяжущих веществ (⁶) и в процессе совместной пластической деформации частиц при прессовании порошков (7), посвящены многочисленные работы. Возникновение кристаллизационных контактов при срастации отдельных кристаллов лежит в основе «слеживания» кристаллических порошков, например минеральных удобрений, при их хранении в условиях переменной влажности. Принято считать, что процесс развития слеживация сводится к перекристаллизации вещества прижатых друг к другу кристаллов в зонах контактов через мениски скондепсировавшейся из паров жидкой фазы водного раствора. Соответственно изучение формирования контактов в процессе частичной перекристаллизации вещества через жидкую фазу необходимо для выяснения механизма слеживания кристаллических порошков с целью научного обоспования способов управления структурно-механическими свойствами порошковых материалов. Этому вопросу и посвящена данная работа.

В качестве объекта исследования был выбран порошок NaCl (х.ч.), достаточно гигроскопичный, как и большинство минеральных удобрений. Порошок предварительно измельчался в вибромельнице и фракционировался для получения достаточно узких фракций. В работе использовалась фракция со средним радиусом частиц $\bar{r} \sim 10$ µ. Основным изучаемым параметром пористых структур была прочность контактов p_1 (дин), которая оценивалась по ранее принятому нами способу (в) на основании данных омакропрочности пористых образцов с использованием модели глобулярной пористой структуры (в). Образцы получались в виде таблеток d=1 см и h=0.5 см путем формования при небольших усилиях (~ 0.5 кг) сухих порошков и последующего их увлажнения в парах воды (в эксикаторах с водным раствором H_2SO_4) при компатной температуре до определенной влажности. Степень увлажнения контролировалась весовым методом и характеризовалась как $W(\%) = (M_B - M_\odot) \cdot 100 / M_c$, где M_B — вес увлажненного, а M_c — вес сухого образца. Для равномерного распределения влаги

внутри образцов последние по достижении определенной влажности выдерживались в замкнутом объеме в течение педели. Затем образцы высушивались при постепенном повышении температуры (для более равномерной сушки) и доводились до постоянного веса при 120°. Высущенные образцы хранились в эксикаторе над свежепрокаленным пеолитом.

Измерения прочности (P_c) проводились на приборе МП-2С раздавливанием таблеток по направлению, перпендикулярному оси цилиндра. Прочность контактов (p_1) оценивалась как $p_1 = P_c / \chi$, где χ — число контактов на 1 см² контактного слоя, рассчитанное на основании принятой модели из данных о пористости H образдов и дисперсности порошка по способу, описанному в $(^8)$. Прочность контактов между частицами исходного порошка (до увлажнения) оценивалась на основании измерения прочности на разрыв слабо уплотненного (практически под действием только собственного веса) слоя порошка по методу, описанному в $(^{10})$, а также по методу измерения предельного напряжения сдвига путем тангенциального смещения пластинки в слое такого порошка. Прочность контактов, оцененная таким способом, близка к прочности контактов, возникающих в большой массе свободно насыпанного порошка.

Приводим результаты оценки прочности контактов (p_t) в порошках NaCl до и после увлажнения:

$$\begin{array}{ccccc} W, \ \% & 0 & 0,1 \\ \chi, \ \text{cm}^{-2} & 1,5\cdot 10^5 & 1,5\cdot 10^5 \\ P_{\text{c}}, \ \text{r/cm}^2 & 1 & 2000 \\ p_1, \ \text{muh} & <10^{-2} & \approx 13 \end{array}$$

В исходных структурах (при W=0) прочность контактов не превышает 10^{-2} дин. Это не фазовые, а адгезионные контакты, в которых сцепление частиц (прочность контактов) обусловлено в основном ван-дер-ваальсовыми силами притяжения. Вклад валентных сил в прочность таких контактов невелик, так как в отсутствие пластической деформации частиц и массопереноса вещества через жидкую фазу (при W=0) поверхность, на которой может развиваться сцепление за счет валентных сил, не превышает площади в одну или несколько атомных ячеек.

Увлажнение порошков до W=0.1% и последующее высущивание приводит к резкому (на 3 порядка) нарастанию прочности контактов между частицами. Прочность контактов в 10 дин обусловлена валентными силами, действующими на заметной площади. Качественное изменение контактов в структуре — переход адгезионных контактов в кристаллизационные — привело и к качественному изменению свойств структуры: сыпучий порошок (практически несвязная дисперсная система) превратился в пористое дисперсное тело с заметной прочностью (хорошо связную дисперсную систему).

Процесс перехода адгезионных контактов в кристаллизационные в этих условиях естественно связать с переносом растворенного вещества в вершину контактной зоны, где кривизна поверхности имеет отрицательный знак и наибольшую абсолютную величину, с преимущественным выделением из раствора именно в этом месте. Тогда прочность возникающих контактов должна расти с увеличением количества вещества, подвергшегося перекристаллизации, т. е. с увеличением влажности образцов. Действительно, как видно из рис. 1, где представлена зависимость $p_1 - W$, прочность контактов с ростом значений W увеличивается. В соответствии с этим допустим в качестве грубого приближения, что все растворенное вещество при выкристаллизовывании расходуется на построение контакта. Оценим теперь возможную прочность структуры P_c^* , возникающей в порошке NaCl в процессе его последовательного увлажиения и высущивания, считая, что $P_{c}^{*} = p_{1}^{*}\varkappa$, а $p_{1}^{*} = p_{yx}S$, где $p_{1}^{*} -$ средняя прочность контактов, χ — число контактов на 1 см 2 контактного слоя, p_{yg} — удельная прочность материала в контакте, S — площадь контакта. Справедливость такого соотношения была экспериментально доказана для глобулярных структур с пористостью от 30 до 55% (11). Оценку площади контактов, образование которых связано с массопереносом вещества в вершину контактной зоны, можно получить из соотношения $V_{\rm R}=\pi R^4/2r$ (12), полагая $V_{\rm R}=V_{\rm B}$, где R — радиус контактной площади $S=\pi R^2$, $V_{\rm B}$ — объем выкристаллизовавшегося в 1 контакте вещества, $V_{\rm R}$ — объем контактного слоя, r — радиус частии.

Значения $V_{\rm B}$ рассчитываются из данных:

1) о влажности образцов и растворимости NaCl, что определяет общее количество (объем) выкристаллизовавшегося в образце вещества (v);

2) о пористости и дисперсности (r), что определяет общее число контактов в образце (v). Тогда $v / v = V_{\rm B}$. Рассмотренный способ оценки площади контактов S дает, по-видимому, несколько завышенные значения, особенно при существенной влажности образцов. Естественно, что часть вещества, кристаллизуясь в расширенной части зазора между частицами

(по периферии от вершины контактной зоны), не будет непосредственно участвовать в образовании контакта срастания, причем количество такого вещества увеличивается по мере увеличения объема жидкости в контактной зоне. С этим, скорее всего, связан явно меньший рост прочности контактов при W > 1%. Поэтому такой способ целесообразно использовать только при малых степенях увлажнения, когда возникают точечные кристаллизационные контакты (т. е. когда $R \ll r$).

Как показывает расчет, при W=0.1% в структуре с пористостью H=44%, построенной из частиц с $\tilde{r}\sim 10~\mu$, могут возникать контакты с площадью $S\sim \sim n\cdot 10^{-8}~{\rm cm}^2$.

При оценке прочности контактов p_1^* с такой площадью для значения p_{yx} можно воспользоваться экспериментально найденным значением прочности кристаллов

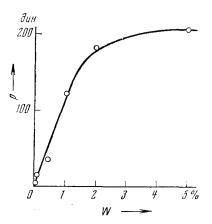


Рис. 1. Зависимость средней прочности контактов в пористых дисперсных структурах от степени увлажнения образцов

NaCl такого же сечения, которое, по данным работы (12), составляет $\sim 10^3$ кг/см². Тогда $p_i^* = p_{yx}S \approx 10^3$ кг/см² $\cdot n \cdot 10^{-8}$ см² $\approx n \cdot 10^{-5}$ кг.

В результате для значения прочности структуры, возникающей при указанных условиях, получаем $P_{\rm c}{}^*=p_{\rm i}{}^*\chi=n\cdot 10^{-5}~{\rm kr}\cdot 10^5~{\rm cm}^{-2}.$

Измерения прочности P_c таких образцов дают величину 2 кг/см². Ниже приведены результаты сопоставления значений P_c и P_c *:

W, $%$	$P_{ m C}$, KP, CM 2	P_{C}^{*} , kp cm²
0,01	0,6	≈1
0.1	2	единицы
0,5	5	10
1	18	десятки
5	31	100

Разумеется, не следует переоценивать хорошее совпадение приведенных экспериментальных и расчетых значений прочности, так как использованная для расчетов схема достаточно груба и обеспечивает лишь оценку по порядку величины. Тем не менее, приведенный способ оценки прочности структуры, возникающей в слое порошка в условиях переменной влажности, на основании данных о его дисперсности, пористости слоя, растворимости вещества частиц и степени увлажнения правильно отражает наблюдаемую количественную картину и может быть полезеи для ориентировочной оценки слеживаемости порошков.

Возникновение между частицами порошка контактов с прочностью ~1 дин и выше соответствует, по-видимому, более поздней стадии срастания — обрастанию начального контактного мостика — зародыша кристаллизационного контакта, флуктуационно возникающего в узком зазоре между прилегающими друг к другу частицами.

Полученное в данной работе хорошее совпадение экспериментальных и рассчитанных величин $P_{\rm c}$ дает основание полагать, что изучение прочности дисперсных структур в сочетании с предлагаемым способом расчета илощади контактов, возникающих в рассмотревных условиях, может быть использовано и для изучения прочности микрокристаллов различных веществ, если по тем или иным причинам затруднено непосредственное измерение прочности таких кристаллов.

Изучение закономерностей формирования кристаллизационных контактов дает возможность обосновать путь уменьшения слеживаемости порошков — устранения возможности перекристаллизации вещества в контактной зоне или максимально возможного спижения прочности возникающих кристаллизационных контактов.

Московский государственный университет им. М. В. Ломоносова

Поступило 23 V 1972

Институт физической химии Академии наук СССР Москва

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Б. В. Дерягин, И. И. Абрикосова, Е. М. Лиф шиц, УФН, 64, 483 (1958).
² Г. И. Фукс, В. М. Клычников, Е. В. Цыганова, ДАН, 65, 307 (1949).
³ Л. А. Абдурагимова, П. А. Ребиндер, Н. Н. Серб-Сербина, Колл. журп., 17, 184 (1955).
⁴ А. Б. Таубман, Е. Д. Яхнин, Колл. журп., 26, 653 (1964); Е. Д. Яхнин, ДАН, 164, 1107 (1965).
⁵ Б. В. Дерягип, А. Д. Зимоп, Колл. журн., 23, 544 (1961); 25, 459 (1963); А. Д. Зимоп, Адгезия пыли и порошков, 1967.
⁶ Е. Е. Сегалова, П. А. Ребиндер, Строительные материалы, № 1, 21 (1960).
⁷ Е. Д. Щукип, Р. К. Юсупов и др., Колл. журн., 31, 913 (1969); Е. Д. Щукип, Е. А. Амелина и др., ДАН, 191, 1037 (1970); Р. К. Юсупов, Е. А. Амелина и др., ДАН, 191, 1037 (1970); Р. К. Юсупов, Е. А. Амелина и др., ДАН, 200, 4077 (1971).
⁸ Е. А. Амелина, Е. Д. Щукип, Колл. журн., 32, 795 (1970).
⁹ П. А. Ребиндер, Е. Д. Щукин, Л. Я. Марголис, ДАН, 154, 695 (1964).
¹⁰ Е. И. Андриапов, А. Д. Зимон, С. С. Янковский, Колл. журп., 32, 804 (1970).
¹¹ В. Г. Бабак, Е. А. Амелина и др., ДАН, 206, № 1 (1972).
¹² Я. Е. Гегузин, Физика спекания, «Наука», 1967.
¹³ Z. Gyulai, Zs. Phys., 138, 317 (1954).