Доклады Академии наук СССР 1973. Том 208, № 1

УДК 553.462 + 549.623.5

ПЕТРОГРАФИЯ

В. И. СОТНИКОВ, Е. И. НИКИТИНА, А. А. ПРОСКУРЯКОВ, Ю. Г. ЛАВРЕНТЬЕВ, Л. Н. ПОСПЕЛОВА

НЕКОТОРЫЕ ОСОБЕННОСТИ СОСТАВА БИОТИТОВ ИЗ ЗОН ЭКСПЛОЗИВНЫХ БРЕКЧИЙ ШАХТАМИНСКОГО МОЛИБДЕНОВОГО МЕСТОРОЖДЕНИЯ (ПО ДАННЫМ ЭЛЕКТРОННОГО МИКРОЗОНДИРОВАНИЯ)

(Представлено академиком В. А. Кузнецовым 16 XI 1971)

Среди пемногочисленных новообразованных минералов в зонах эксплозивных брекчий, развитых на месторождениях медно-молибденовой рудной формации, одним из ведущих является биотит. Наиболее характереи он для цементирующей массы брекчий, которая часто представляет собой тонкоперетертый материал обломков, сцементированный мелкочешуйчатым биотитом, магнетитом, кварцем с небольшой примесью апатита, рутила и др. Из-за тесного срастания биотита с перетертым материалом окружающих пород и другими новообразованными минералами и общего, обычно пезначительного, количества его в брекчиях использование для изучения состава минерала химических апализов затруднительно. Объективную информацию в данном случае дает электронное микрозондирование.

На микрозонде MS-46 был исследован биотит из зон эксплозивных брекчий Шахтаминского молибденовского месторождения. В табл. 1 для сравнения приведены результаты анализа биотитов из других пород, развитых на площади месторождения. Пересчет анализов произведен по кис-

лородному методу без учета H₂O (на 11 атомов кислорода).

Шахтаминское месторождение (1, 2) представлено серией кварц-молибденитовых жил и прожилковых зон среди крупного массива роговообманково-биотитовых гранитоидов (Шахтаминский массив), прорванных миогочисленными дайками и отдельными штоками порфировых пород (по возрасту от основных к кислым), с которыми и связано молибденовое оруденение. На площади месторождения проявлено два морфологических типа эксилозивных брекчий: штокообразное тело брекчий, фиксирующее зону высокой активности, и серия жилообразных брекчиевых тел (впервые выявлены в 1956 г. В. И. Сотниковым), развитых на удалении от этой зоны. Обломки в брекчиях представлены преимущественно вмещающими шахтаминскими гранитоидами, а цемент — тонкоперетертым материалом тех же пород, с новообразованными минералами. Формирование эксплозивных брекчий несколько предшествовало становлению порфировых тел.

Рассмотренные биотиты по своему химизму относительно близки друг к другу, что обусловлено, с одной стороны, принадлежностью их к единому эндогенному процессу (биотиты из порфировых пород и зои эксплозивных брекчий), а с другой — отмечаемой петрохимической и геохимической общностью между порфировыми образованиями и вмещающими их

шахтаминскими гранитоидами.

Все биститы являются относительно высоко магнезиальными, что, повидимому, отражает пониженную кислотность минералообразующей среды (учитывая более основные свойства магния по сравнению с железом). По общей железистости Fe / (Fe + Mg), % (см. табл. 1) особенно близки между собой биститы из генетически связанных образований, включая

Компонент	№ 868	№ 869	№ 882	№ 121	№ 121 ^a	№ 1 22	№ 1 <u>22</u> a	№ 881/2	№ 881/8	№ 881/5
SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO Na ₂ O K ₂ O Gl Si Ti Al	38,6 4,22 13,5 15,6 0,10 14,3 0,08 10,0 0,15 2,86 0,23	38,5 3,81 13,8 16,9 0,12 13,2 0,08 9,94 0,18 2,87 0,21	37,8 4,66 13,5 16,0 0,18 13,3 0,08 9,57 0,16 2,84 0,26 1,12	$\begin{vmatrix} 14.8 \\ 0.16 \\ 10.1 \end{vmatrix}$	39,0 3,83 12,1 14,0 0,13 15,7 0,18 9,40 0,11 2,93 0,21	37,0 3,26 43,3 45,8 0,07 45,5 0,09 9,45 0,22 2,82 0,18	37,6 3,64 42,9 46,1 0,06 45,1 0,12 9,69 0,21 2,84 0,20 1,16	38,0 3,91 13,4 15,8 0,06 14,7 0,13 9,81 0,14 2,84 0,22 1,18	38,9 3,91 43,6 15,9 0,08 44,8 0,16 9,67 0,15 2,86 0,21 1,18	38,9 3,99 14,0 15,6 0,06 14,9 0,26 9,62 0,12 2,85 0,22 1,20
Al Fe Mg Na K	1,18 0,97 1,58 0,01 0,94	1,12 1,06 1,48 1,01 0,94	1,01 1,49 0,01	1,00	$ \begin{array}{c c} 1,08 \\ 0,88 \\ 1,75 \\ 0,03 \\ 0,90 \end{array} $	1,18 1,00 1,75 0,01 0,91	1,16 1,01 1,70 0,02 0,93	0,99 1,64 0,02 0,93	1,18 0,98 1,62 0,02 0,91	0,96 1,63 0,02 0,90
$\begin{array}{l} Fe/(Fe+Mg), \ \% \\ AI/(AI+Mg+Fe+\\ +Si), \ \% \\ (Na+K)/AI \end{array}$	38,0 17,9 0,81	41,7 17,1 0,82	$\begin{vmatrix} 40, 4 \\ 17, 3 \\ 0, 84 \end{vmatrix}$	37,6 16,9 0,88	$ \begin{array}{c} 33.8 \\ 16.2 \\ 0.85 \end{array} $	36,4 $17,5$ $0,78$	37,3 17,2 0,81	$\begin{bmatrix} 37,6\\47,7\\0,80 \end{bmatrix}$	37,7 $17,8$ $0,80$	$\begin{vmatrix} 37,1\\18,1\\0,77 \end{vmatrix}$
Группа щелочно-	IV	IV	IV	V	V	IV	IV	IV	IV	IV

Примечание. №№ 868, 869 — Шахтаминские гранитоиды (вблизи кварц-молибденитовой жилы), № 882 — Шахтаминские гранитоиды; жильная эксплозивная брекция: № 121 — обломки; № 121^а — пемент; штокообразная брекция: № 122 — обломки, № 122^а — цемент; № 881/2 — лампрофир; № 881/8 — диоритовый порфирит; № 881/5 — гранит-порфир. Все железо — в влде FeO.

сюда и преобразованный биотит (№ 868) шахтаминских гранитоидов из экзоконтакта околожильных метасоматитов (аргиллизированные породы с разложенным биотитом). Из этого ряда выделяется биотит цемента жильных брекчий (№ 121^а), характеризующийся заметно пониженной общей железистостью (33,8%). Железистость биотита самих шахтаминских гранитоидов (№ 882) несколько выше по сравнению с биотитом рудоносных порфировых пород. Повышенной железистостью характеризуется также и биотит (№ 869), отобранный из пробы гранитоидов, примыкающей к пробе № 868 из экзоконтакта метасоматитов.

На диаграмме Si / Al — (Mg + Fe) / Al (3) анализировавшиеся биотиты, за исключением биотитов из жильных брекчий (№№ 421; 121°), попадают в IV группу повышенной щелочности гранитоидов с глиноземистостью в пределах 47—49. Биотиты жильных брекчий относятся к группе более повышенной щелочности (V), располагаясь в ней вблизи границы с IV группой. Глиноземистость их (особенно бпотита цементирующей массы) понижена. Биотиты же из штокообразного тела по глиноземистости близки к биотитам порфировых пород.

В возрастном ряду последних (пробы биотита отобраны из пород сложной дайки: лампрофир-диоритовый порфирит — гранит-порфир) отмечается некоторое увеличение в составе биотита глинозема от основных пород к кислым, что, по-видимому, обусловлено дифференциацией магматического очага с некоторым снижением щелочности и повышением роли летучих. На снижение щелочности указывает и снижение отношения (Na + K) / Al в биотитах гранит-порфиров. Однако, судя по незначительному различию всех этих параметров, дифференциация была относительно слабой. Алюминий в биотитах порфировых пород не только входит в кислородные тетраэдры, но и находится в шестерной координации.

Несколько возрастает (по сравнению с биотитом неизмененных шахтаминских гранитоидов) глиноземистость преобразованных биотитов гранитондов экзокоптактовой зоны метасоматитов (N 882, N 868). Отношение (Na + K) / Al снижается.

Биотиты из разных морфологических типов эксплозивных брекчий несколько различаются и по глипоземистости. В то же время, биотиты обломков и цемента в одном типе брекчий по этому параметру довольно близки между собой, что особенно характерпо для штокообразного брекчиевого тела.

В целом от эксплозивных брекчий (особенно, если исходить от цементирующей массы жильных брекчий) к гранит-порфирам отмечается возрастание глиноземистости биотитов. В этом же направлении устанавливается тенденция к снижению отношения (Na + K) / Al.

Для биотитов эксплозивных брекчий в зависимости от морфологии проявления последних фиксируется различный характер изменения отношений Al / (Al + Mg + Si), % и (Na + K) / Al. В жильных брекчиях более глиноземистым является биотит из обломков (№ 121), оп же характеризуется паиболее высоким (по сравнению со всеми изученными нами биотитами) отношением (Na + K) / Al. Для биотита цементирующей массы (№ 121³) эти параметры относительно понижены. В целом при возрастании глиноземистости биотитов отмечается и увеличение отношения (Na + K) / Al.

В штокообразном теле брекчий биотит обломков также более глиноземистый по сравпению с биотитом цемента, но значение (Na + K) / Al для него ниже, т. е. здесь возрастанию глиноземистости соответствует снижение этого отношения. В последнем случае мы имеем дело с той же тенденцией, что и для биотитов порфировых пород и преобразованного биотита гранитоидов из экзоконтактовой зоны метасоматитов. Согласно Маракушеву и Тарарину (3), подобная зависимость отмеченных отношений в темноцветных железо-магнезиальных минералах гранитоидов является отражением изменения режима их кислотности — щелочности, показателем которой может служить отношение (Na + K) / Al в минералах,— они обогащаются алюминием.

Нарушение соотношений параметров в биотитах жильных брекчий, возможно, обусловлено пелостаточно полной преобразованностью биотита обломков шахтаминских гранитоидов в процессе эксплозивного брекчирования (меньшая преобразованность обломков, сохраняющих во многом свою первопачальную форму, объясняется, очевидно, незначительным интервалом транспортировки и менее продолжительным воздействием высоконагретой паро-газовой смеси по сравнению с условиями формирования питокообразного тела брекчий). Высокое отношение (Na + K) / Al в этих биотигах (особенно в биотите из обломков грапитоидов) обусловлено, очевидио, повышенной химической битлон в процессе эксплонения в процессе эксплонения ного брекчирования (преимущественно на раннем этапе, - обломки гранитоидов в брекчии в значительной степени калишпатизированы). Не исключено также влияние на содержание истонит-сидерофиллитового компопента в биотитах высоких температур, характерных для процесса эксплозивного брекчирования. Именно с влиящием высоких температур связывают Маракушев и Тарарин (3) образование бедных глиноземом биотитов в экструзивных гранятоидах и кислых эффузивах по сравнению с биотитами пормальных среднеглубинных гранитоидов.

При сравнение глиноземистости биотитов из брекчий различных морфологических тинов видно, что в случае жильных брекчий биотиты беднее глиноземом и характеризуются более высоким отношением (Na ÷ K) / Al, что позволяет предполагать для этого тина брекчий формирование в условиях относительно повышенной щелочности. О повышенной щелочности преобразованных биотитов обломков жильных брекчий свидетельствует также увеличение в их составе титана, который даже частично вытесняет алюминий из кислородных тетраэдров (³). В этом плане биотит обломков приближается к биотиту шахтаминских гранитондов (№ 882). Для более

достоверной оценки кислотности — щелочности образований необходим, по-видимому, учет температур минералообразования. Сейчас более или менее определенно можно отметить, что минералообразование в цементе шло при более высоких температурах,— особенно отчетливо это выявлено для жильных эксплозивных брекчий.

Различаются биотиты эксплозивных брекчий и по содержанию в пих хлора. Наиболее высокие количества его отмечены для биотитов штокообразного брекчиевого тела (при равенстве его содержания в биотитах обломков и цемента), что, по-видимому, связано с выравниванием (в связи с интенсивной проработкой) термодинамических параметров во всей зопе брекчирования. Интересно, что сосуществующий с биотитом апатит из этого брекчиевого тела также обогащен хлором (4). В то же время, в апатите из жильных брекчий содержание хлора заметно снижается. По-видимому, процесс эксплозивного брекчирования в зопе формирования штокообразного брекчиевого тела, в отличие от зоп жильных брекчий, происходил при большей активности хлора.

Таким образом, биотиты эксплозивных брекчий, при всей их общности с биотитами порфировых пород (являющимися образованиями того же эндогенного процесса) и близости к биотитам вмещающих шахтаминских гранитондов, имеют некоторые особенности состава, обусловленные формированием их в специфических условиях эксплозивного брекчирования. Наибольние отличия, связанные, очевидно, с повышенной щелочностью и высокими температурами, характерны для биотитов жильных брекчий. Биотиты штокообразного брекчиевого тела, пространственно более приближенного к относительно крупному штокообразному телу грнит-порфиров (не исключена и их временная и гепетическая сближенность), практически идентичны по составу биотитам порфировых пород рудоносного магматического комплекса.

Институт геологии и геофизики Сибирского отделения Академии наук СССР Новосибирск Поступило 3 XI 1971

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. В. Сидоренко, Геология и петрология Шахтаминского интрузивного комплекса, Изв. АН СССР, 1961. ² В. И. Сотников, Тр. Инст. геол. рудп. месторожд., петрогр., миперал. и геохим., в. 41 (1961). ³ А. А. Маракушев, И. А. Тарарин, Изв. АН СССР, сер. геол., № 3 (1965). ⁴ В. И. Сотников, Е. И. Никитипандр., Геохимия, № 2 (1974).