Академик АН УССР Б. Г. ЛАЗАРЕВ, С. И. ГОРИДОВ

ВЛИЯНИЕ ТОЛЩИНЫ МЕДНОГО ПОКРЫТИЯ НА КРИТИЧЕСКИЙ ТОК СВЕРХПРОВОДЯЩЕЙ ПРОВОЛОКИ ИЗ СПЛАВОВ НА ОСНОВЕ НИОБИЯ

Известно, что покрытие сверхпроводящей проволоки медью приводит к существенным улучшениям характеристик соленоидов, намотанных из этой проволоки (1-3). Однако в литературе нет сведений об экспериментальных исследованиях, в которых бы выяснялось детально влияние толщины медного покрытия на критические токи проволоки.

В настоящей работе исследовалась зависимость критической плотиости тока от толщины медного покрытия d для оптимально термообработанной проволоки из сплавов 60T (Nb — 60 ат.% Ti) и CC-2 (Nb — 25 ат.% Zr — 25 ат.% Ti). Исходная проволока со сверхпроводящей сердцевиной имела медное покрытие толщиной 40μ . Слой меди либо уменьшался химической и электрохимической полировкой от 40 до 4μ , либо увеличивался гальваническим нанесением меди в сернокислом электролите от 40 до 120 μ . На U-образных образдах, имевших непосредственный контакт с жидким гелием, при $4,2^\circ$ K снималась зависимость критического тока от поперечного магнитного поля.

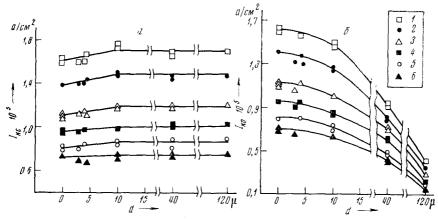


Рис. 1. Зависимость критической плотности тока в расчете на сечение сверхпроводника (a) и все сечение медненной проволоки 60Т (b) от толщины медного покрытия при разных напряженностях H магнитного поля: 1-H=15 кв. 15-16 кв. 1

На рис. 1 для проволоки 60Т приведены полученные зависимости критической плотности тока в расчете на сечение сверхпроводящей сердцевины $J_{\rm KC}$ и в расчете на все сечение проводника $J_{\rm KO}$ от толщины медного покрытия при разных значениях напряженности магнитного поля. Величина $J_{\rm KC}$ растет в интервале толщин от 0 до 10 μ , а затем вплоть до 120 μ не меняется. Величина $J_{\rm KO}$ из-за роста сечения проволоки монотонно спадает при увеличении d. Для проволоки СС-2 графики $J_{\rm KC}(d)$ и $J_{\rm KO}(d)$ имеют подобный вид. Для обоих сплавов разброс значений $J_{\rm KC}$ и $J_{\rm KO}$ увеличивается при уменьшении толщины покрытия. Чтобы не усложнять графики, на рис. 1 линии проведены по максимальным значениям плотностей тока, а точки, соответствующие разбросу, не показаны.

Известно (3, 4), что одной из главных причин, ограничивающих величину критического тока, является тепловыделение за счет скачков магнитного потока в сверхпроводнике. Медное покрытие демпфирует скачки, увеличивает теплоотвод от перегретого участка, притом в тем большей степени, чем толще слой меди. Это приводит к уменьшению величины локального перегрева сверхпроводника по отношению к гелиевой ванне и, следовательно, способствует увеличению критической плотности тока $oldsymbol{J}_{ ext{ iny KC}}$ и уменьшению величины ее разброса, главным образом, в интервале толщин от 0 до 10 и. При толщине 10—120 и величина перегрева, по-видимому, будет настолько мала, что значение $J_{\kappa c}$ будет определяться в основном химическим и фазовым составом сверхпроводника, его структурой и диаметром проволоки. Из рис. 1а видно, что при увеличении магнитного поля уменьшается влияние толщины медного покрытия на величину $J_{\rm EC}$, что особенно заметно при 60 кэ по практически постоянному значению плотности тока во всем интервале толщин. Это соответствует ранее выясненным данным об уменьшении скачков магнитного потока с ростом поля (5) и связанного с этим тепловыделения, что проявляется в практическом совпадении сверхпроводящих характеристик коротких образцов и соленоидов в больших магнитных полях (6).

В заключение авторы выражают благодарность Л. С. Лазаревой за обсуждение результатов и Т. Г. Дробаченко за помощь в изготовлении образнов.

Физико-технический институт Академии наук УССР Харьков Поступило 14 II 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ М. Г. Кремлев, УФН, 93, № 4, 675 (1967). ² Ч. Лаверик, Сверхпроводящие магниты, М., 1968, стр. 36. ³ Б. Г. Лазарев, Л. С. Лазарева, С. И. Горидов, ДАН, 199, № 5, 1044 (1971). ⁴ R. Напсох, LT-10, 2В, ВИНИТИ, М., 1967, стр. 43. ⁵ Б. Г. Лазарев, О. Н. Овчаренко, ДАН, 189, № 6, 1218 (1969).
• Б. Г. Лазарев, Л. С. Лазарева, С. И. Горидов, ДАН, 177, № 6, 1310 (1967).