УДК 576.3:612.014.46:616-006

БИОХИМИЯ

Г. А. БЕЛИЦКИЙ, Т. А. БОГУШ, М. А. ПАНОВ

ВЛИЯНИЕ ХЛОРАМФЕНИКОЛА НА СВЯЗЫВАНИЕ Н³-ДИМЕТИЛБЕНЗ-(α)-АНТРАЦЕНА С НУКЛЕИНОВЫМИ КИСЛОТАМИ В КУЛЬТУРЕ НОРМАЛЬНЫХ ЭМБРИОНАЛЬНЫХ КЛЕТОК МЫШИ

(Представлено академиком А. Н. Белозерским 16 V 1972)

В предыдущей работе мы показали, что антибиотик хлорамфеникол (ХМФ) способен значительно спижать токсическое действие диметилбенз-(а)-антрацена (ДМБА) и бенз-(а)-пирена (БП) на культуру нормальных эмбриональных клеток мыши, не изменяя интенсивность метаболизма этих углеводородов. Подавление токсического действия сопровождалось незначительным снижением связывания метаболитов Н³-ДМБА и Н³-БП с белками клеточного монослоя и культуральной среды, которое, однако, не коррелировало с уменьшением токсичности углеводородов (1, 2).

В настоящей работе изучается влияние ХМФ на интенсивность метаболизма Н³-ДМБА и на связывание метаболитов ДМБА с нуклеиновыми кислотами клеток. Опыты проводили на 1 пассаже нормальных эмбриональных фибробластов мыши. ХМФ и Н³-ДМБА (удельная активность 330 µС/ммоль, Radiochemical Centre, Amersham) добавляли в культуру вместе со свежей средой через 2—3 дня после высева клеток в большие матрицы Фернбаха (площадь дна ~155 см²) и инкубировали культуру в течение 24 час. На одно выделение нуклеиновых кислот брали 6—7 матрацев. РНК из клеток выделяли по методу Шерера (³), а ДНК экстрагировали из промежуточного слоя и фенольной фазы при рН 8. Определение метаболизма и измерение связывания Н³-ДМБА с белками клеток и среды проводили по методике, описанной нами ранее (4).

Полученные результаты представлены в табл. 1. ХМФ в концентрации 100 п 500 µг/мл не влияет на скорость метаболизма Н³-ДМБА: за сутки инкубации независимо от присутствия в среде ХМФ метаболизируется около 54—67% добавленного в культуру Н³-ДМБА. Метаболизм канцерогенного углеводорода сопровождается связыванием его метаболитов с

Таблица 1 Влияние ХМФ на метаболизм и связывание 1 μ г/мл Н³-ДМБА с белками и нуклеиновыми кислотами за сутки инкубации

№ опыта	Концентрация ХМФ , µг/мл	Количество мета- болизированного Н°-ДМБА, % от исходного			Нукленновые кислоты, имп/мин-мг	
			клетки	среда	днк	РНК
1	_				39,3±0,5	19,5 <u>+</u> 0,2
2	100	65+0,3	15000+1000		$25,3\pm0,3 \ 30,9\pm0,4$	$14,5\pm0,1$ $19,9\pm0,8$
	100 500	67 ± 0.9 65 ± 0.9	15000 <u>干</u> 1000 14000 <u>干</u> 1000	1400 <u>∓</u> 100 1370 + 90	$18,7 \pm 0,9 \\ 8,6 \pm 0,1$	$12,9\pm0,3$ $4,8\pm0,1$
3	100	54+0.8	8600±100 10100+200	480 <u>∓</u> 40 500 <u>∓</u> 90	33,4±0,9	$30,8\pm0,3$
	500	$62 \pm 1,2$ $54 \pm 1,8$	9300 + 300	470 + 90	30,1 <u>4</u> 0,7 11,5 <u>±</u> 0,3	$31,1 \pm 0,4$ $14,1 \pm 0,9$

РНК, ДНК и белками клеток и культуральной среды. ХМФ в концентрации 100 и 500 µг/мл не влияет на связывание Н³-ДМБА с белками клеточного монослоя и среды. Следует отметить, что в предыдущей работе мы наблюдали небольшое подавление связывания Н³-ДМБА с белками в присутствии 500 µг/мл ХМФ. Возможно, что это объясняется различиями в постановке опыта. Например, в настоящей работе соотношение культуральной среды и клеток было в несколько раз выше, чем в предыдущей (¹). Связывание Н³-ДМБА с ДНК и РНК оказывается одинаково чувствительным к действию ХМФ. ХМФ в концентрации 100 µг/мл подавляет связывание Н³-ДМБА с ДНК на 36—40%, а с РНК на 26—35%. В одном из опытов подавление связывания с ДНК было статистически недостоверным, а связывание с РНК не изменялось (опыт 3). При концентрации ХМФ 500 µг/мл связывание Н³-ДМБА с нуклеиновыми кислотами подавляется значительно сильнее и снижается на 66—72% для ДНК и на 55—76% для РНК.

Как было показано в предыдущей работе, XMФ в концентрации 500 µг/мл сильнее снижает токсический эффект ДМБА и БП, чем в концентрации 100 µг/мл. В связи с этим можно предположить, что одной из причин снижения токсического действия ДМБА (а возможно и БП) в присутствии ХМФ может быть подавление связывания метаболитов канцерогенных углеводородов с нуклеиновыми кислотами клеток. Полученные нами данные согласуются с представлением о том, что необходимым условием для проявления токсического действия углеводородов является их связывание с нуклеиновыми кислотами (5,6).

Московский государственный университет им. М. В. Ломоносова

Поступило 48 I 1972

Институт экспериментальной и клинической онкологои Академии медицинских наук СССР Москва

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Г. А. Белицкий, Т. А. Богуш, Цитология, № 11 (1970). ² Т. А. Богуш, Вопр. онкол., 18, № 8, 72 (1972). ³ К. Scherrer, H. Latham, J. E. Darnell, Proc. Nat. Acad. Sci. U.S.A., 49, 240 (1963). ⁴ И. М. Бужурина, Ю. М. Васильев и др., Цитология, № 10 (1971). ⁵ L. Diamond, V. Defendi, F. Brooks, Cancer Res., 27, 890 (1967). ⁶ T. Matsusima, J. H. Weisburger, Chem. Biol. Interactions, 1, 2, 211 (1969).