ФИЗИЧЕСКАЯ ХИМИЯ

УДК 543.42

Ю. И. КИРЮХИН, З. А. СИНИЦЫНА, член-корреспондентАН СССР Х. С. БАГДАСАРЬЯН

ОПРЕДЕЛЕНИЕ КВАНТОВОГО ВЫХОДА ДВУХКВАНТОВЫХ РЕАКЦИЙ И СПЕКТРЫ ТРИПЛЕТ-ТРИПЛЕТНОГО ПОГЛОЩЕНИЯ В У.-Ф. ОБЛАСТИ

Одной из наиболее важных характеристик двухквантовых реакций служит квантовый выход γ , рассчитанный на количество света, поглощенное молекулами в триплетном состоянии. Впервые оценки этой величины для некоторых двухквантовых реакций были получены в работах (1, 2). Для определения γ необходимо знать коэффициент экстинкции триплет-триплетного поглощения в у.-ф. области спектра. Спектры T-T-поглощения в у.-ф. области известны только для нескольких молекул (3-5). В настоящей работе получены спектры и коэффициенты экстинкции T-T-поглощения и измерены квантовые выходы γ для двухквантовых реакций с участием дифениламина, карбазола и тетраметилпарафенилендиамина (ТМФД) в растворе этанола при 77° К. Все измерения производились по методу (5), основанному на определении кинетики возрастания T-T-поглощения при освещении исследуемого образца при 77° К приблизительно монохроматическим (полуширина ~ 10 мµ) у.-ф. светом.

Интегрирование кинетического уравнения для скорости образования триплетных молекул в условиях слабого поглощения возбуждающего света приводит к выражению для оптической плотности D_{22} триплетных молекул для данной длины волны зондирующего света

$$D_{22} = D_{22}^{\infty} \{1 - \exp\left[-(1+B)t/\tau\right]\},\tag{1}$$

где D_{22}^{∞} — предельное значение D_{22} , причем

$$D_{22}^{\infty}=n_0\epsilon_{22}lA/(1+B),\quad A\equiv 2, 3I_0\epsilon_1\Phi_{\mathbf{T}}\tau,\quad B\equiv 2, 3I_0\tau\,(\epsilon_1\Phi_{\mathbf{T}}+\epsilon_2\gamma').$$

Здесь n_0 — исходная концентрация растворенного вещества, I_0 — интенсивность возбуждающего света (эйнштейн / см² · сек), ε_1 и ε_2 — коэффициенты экстинкции синглетных и триплетных молекул для длины волны возбуждающего света, τ — время жизни в триплетном состоянии, Φ_{τ} — квантовый выход образования триплетов, γ' — сумма вероятностей всех процессов дезактивации возбужденного триплетного состояния, кроме возвращения на основной триплетный уровень, l — толщина реакционного сосуда, ε_{22} — коэффициент экстинкции триплетных молекул для длины волны λ зоплирующего света. Целесообразно, чтобы λ соответствовала максимуму T — T-поглощения в видимой области спектра.

Уравнение (1) позволяет определить величины D_{22}° и B. Во многих случаях $\varepsilon_2 \gamma' \ll \varepsilon_1 \Phi_{\tau}$, тогда $B \simeq A *$ и становится возможным определение ε_{22} и Φ_{τ} . Коэффициент экстинкции ε_2 находится путем сравнения оптических плотностей при λ и $\lambda_{y\Phi}$, совпадающей с $\lambda_{y\Phi}$ возбуждающего света. Таким образом,

 $\Delta D_{12}/D_{22} = (\varepsilon_2 - \varepsilon_1)/\varepsilon_{22}, \qquad (2)$

тде ΔD_{12} — изменение оптической плотности вследствие превращения части синглетных молекул в триплетные. Проведение этих измерений для

^{*} В работе (5) в уравнении (2) принято B = A.

различных $\lambda_{\mathrm{y}\Phi}$ позволяет построить спектр $T \to T$ -поглощения в у.-ф. области.

Наиболее полное исследование по этой программе удалось провести для $1.4 \cdot 10^{-4} \ M$ карбазола в этаноле. Измерение отношения интенсивности флуоресценции к интенсивности фосфоресценции при различных интенсивностях возбуждающего света (5) показало, что в выражении для B член $\varepsilon_2 \gamma'$ мал по сравнению с членом $\varepsilon_4 \Phi_r$: в этом случае $B \simeq A$. Указанным выше способом было найдено для максимума T - T-поглощения при

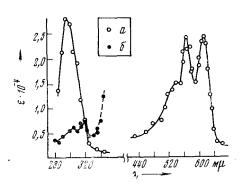


Рис. 1. Спектры T-T-поглощения $\mathbf{TM\Phi \mu}$ в дипропиловом эфире (a) и карбазола (δ) в этаноле при 77° К

425 м μ $\epsilon_{425} = (1,9 \pm 0,2) \cdot 10^{6}$ л/моль \cdot см и $\Phi_{\rm T} = 0,23 \pm 0,03$. Спектр T-T-поглощения в области 280—345 м μ показан на рис. 1. В этой области спектр имеет максимумы при 305 и 318 м μ и изобестическую точку при 298,5 м μ .

Ранее было показано, что при освещении этой системы при 77° K светом λ 280—313 мµ происходит двух-квантовая реакция образования радикалов СН₃СНОН (¹). В настоящей работе спектрофотометрическим исследованием было показано, что в этих условиях освещения происходит уменьшение оптической плотности в области 280—350 мµ без изменения формы спектра, тогда как в области

 $\lambda < 280$ мµ оптическая плотность увеличивается. Таким образом, двух-квантовая реакция, кроме образования радикалов СН₃СНОН, приводит также и к разложению карбазола. Этот вывод согласуется со сделанным нами наблюдением, что при длительном освещении (~ 3 мин.) происходит непрерывное уменьшение оптической плотности триплетов. Очевидно, уменьшение стационарной концентрации триплетных молекул есть следствие уменьшения концентрации карбазола. В условиях слабого поглощения света должно существовать равенство: $\Delta n_0/n_0 = \Delta D_{22}/D_{22}$. Если $\Delta D_{22}/D_{22}$ мало, то $D_{22} \simeq D_{22}^{\infty}$ и $\Delta n_0 = 2,3I_0n_2\epsilon_2\gamma t$, (t—время освещения, n_2 —стационарная концентрация триплетов) или

$$\gamma = n_0 \varepsilon_{22} l \Delta D_{22} / 2, 3 I_0 \varepsilon_2 (D_{22}^{\infty})^2 t *.$$
 (3)

Расчет по формуле (3) удобен тем, что позволяет из одной кинетической кривой возрастания концентрации триплетов определить величины D_{22}^{∞} , ε_{22} , Φ_{τ} и ΔD_{22} , а следовательно, и γ .

Выход γ был также определен из общего числа парамагнитных частиц (метод э.п.р.), образовавшихся за некоторое время освещения образца. Оба метода дали близкое значение γ . Интересно, что γ сильно возрастает при переходе от λ 320 к λ 280 м μ (табл. 1). К сожалению, малая интенсивность света в области λ < 280 м μ не позволила расширить спектральную область этих исследований.

Аналогичное исследование было проведено с раствором дифениламина $(5,7\cdot 10^{-4}\ M)$ в этаноле. Кинетика T-T-поглощения измерялась для максимума при $550\$ мµ (6). Было принято $B\simeq A$. Таким образом получено значение $\epsilon_{550}=(3,1\pm0,1)\cdot 10^4\$ л/моль см, согласующееся со значением, полученым в работе (6) и $\Phi=0,47\pm0,09$. Получить спектр T-T-поглощения в у.-ф. области не удалось: хотя величины $|\Delta D_{12}|$ довольно значительны, разность $\epsilon_1-\epsilon_{22}|\Delta D_{12}|/D_{22}$, равная ϵ_2 , оказалась в области $280-320\$ мµ слишком малой величиной, что делает практически невоз-

^{*} В работе (5) в выражении для γ (уравнение (8)) в знаменателе пропуще за освещаемая поверхность S

можным определение ε_2 . При 317 м μ была обнаружена изобестическая точка, для которой $\varepsilon_2 = \varepsilon_1 = 4,7 \cdot 10^3$ л/мол \cdot см. Для этой длины волны возбуждающего света из величины ΔD_{22} найдено $\gamma = 1,0 \cdot 10^{-2}$. Близкое значение было получено из выхода парамагнитных частиц.

При освещении у.-ф. светом раствора ТМФД в этаноле при 77° κ происходит образование ТМФД+ по двухквантовому механизму (7, 8). Стабилизированные электроны при действии как у.-ф., так и видимого света вступают в реакцию с этанолом, образуя радикалы CH_3CHOH , тогда как

 $TM\Phi \Pi^{+}$ в этих условиях устойчив. Спектр поглощения $TM\Phi \ddot{A}^+$ очень близок спектру T-T-поглощения $(^3)$. $\hat{\Pi}$ ри возбуждении 8. · 10-4 М ТМФД в этаноле светом λ 290 мµ (оптимальная длина волны при учете поглощения у.-ф света катион-радикалом) кинетика возрастания оптической плотности D при 570 м μ (один из максимумов T-Tпоглощения) определяется как увеличением [³ТМФД], так и образованием $TM\Phi \Pi^+$. Если через время t прекратить освещение, то достигнутая оптическая плотность убывает с константой, равной 1/т, до некоторой остаточной плотности $D_{\scriptscriptstyle{\mathrm{A}}}^+$, определяеколичеством образовавшегося ТМФД+. Заметим, что оптические плотности D, D_{22} и D_{Λ^+} при этих из-

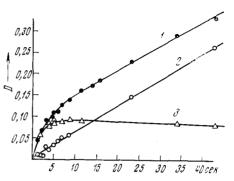


Рис. 2. Кинстика возрастания суммарной оптической плотности (1), оптической плотности катион-радикалов (2) и оптической плотности триплетных молекул (3) при освещении у.-ф. светом раствора ТМФД в этаноле при 77° К

мерениях определяются независимо друг от друга и наблюдаемое равенство $D \doteq D_{22} + D_{\Lambda}^+$ является доказательством правильности этих измерений. Проводя эти измерения при различных временах освещения, можно получить кинетические кривые, представленные на рис. 2.

Молекула	λ возб. света, мμ	λ зондир. света, мμ	10-4 ε ₂₂ ,	Φ_{T}	Y
Тетраметилпарафе-	290	5 70	2,6	0,15	0,09
нилендиамин Дифениламин Карбазол	317 280	$\frac{550}{425}$	3,1	0,47	$0,01 \\ 0,025$
	290 300 340	$425 \\ 425 \\ 425$	1,9*	0,23*	0,011 0,006 0,004
Фенантрен (5)	320 293	425 489	3,8	0,46	0,004

Таблица 1

Очевидно, $d[\text{ТМ}\Phi Д^+]/dt=2,3\gamma I_0\epsilon_2 n_2$ или $dD_{\text{A}^+}/dt=PD_{22}$, где $P\equiv 2,3\gamma I_0\epsilon_2\epsilon_{\text{A}^+}/\epsilon_{22}$. Воспользовавшись уравнением (1) и проведя интегрирование, получим

$$D_{\mathbf{A}^{\tau}} = D_{22}^{\infty} P t - \frac{D_{22}^{\infty} P \tau}{1 + B} \left\{ 1 - \exp\left[-\frac{(1+B)t}{\tau} \right] \right\}. \tag{4}$$

Для суммарной плотности получим выражение

$$D = D_{22} + D_{A^{+}} = D_{22}^{\infty} Pt + D_{22}^{\infty} (1 - P\tau/(1 + B)) \{1 - \exp[-(1 + B)t/\tau]\}.$$
(5)

^{*} Среднее значение, полученное при λ возб. 280—320 мμ.

Так как величина D_{22}^{∞} определяется прямыми измерениями (рис. 2, 3), то уравнение (5) позволяет определить P и B. Кроме того, из опыта находится отношение ($\varepsilon_2 - \varepsilon_1$) / ε_{22} согласно формуле (2). Если теперь сделать предположение, что $\gamma' \simeq \gamma$, то из этих данных можно определить четыре неизвестных параметра: Φ_{τ} , ε_{22} , ε_2 и γ . Полученные значения этих величин приведены в табл. 1. Зная ε_{22} для λ 570 м μ , можно определить ε_2 для других длин волн. Полученный таким образом спектр T-T-поглощения ТМФД в дипропиловом эфире приведен на рис. 1.

Полученное нами значение γ близко к значению, найденному в работе (°) на основании предположения, что коэффициенты экстинкции °ТМФД и ТМФД⁺ для максимумов в видимой области спектра совпадают. Наши значения для Φ_{τ} меньше, а для ϵ_{22} при λ 570 мµ больше, чем определенные в этой работе. Это различие, возможно, объясияется разной природой растворителя: 3-метилиентан в работе (°) и этанол в нашей работе.

Все полученные нами константы приведены в табл. 1.

В работе (5) было обращено внимание на значение эффекта фотоселекции для кинетики фотохимических реакций в «жесткой» среде. Более подробное исследование показало, что для неполяризованного света при совпадении направлений возбуждения и зондирования эффект фотоселекции практически мал, по крайней мере для случая совпадения направления осцилляторов S-S- и T-T-поглощения. Подробнее этот вопрос будет рассмотрен в другом месте.

Физико-химический институт им. Л. Я. Карпова Москва Поступило 23 XII 1971

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ З. А. Синицына, Х. С. Багдасарьян, Кинетика и катализ, 8, 283 (1967).
² Х. С. Багдасарьян, Кинетика и катализ, 8, 1073 (1967).
³ К. D. Саdogan, A. C. Albrecht, J. Phys. Chem., 73, 1868 (1969).
⁴ W. Heinzelmann, H. Labchart, Chem. Phys. Letters, 4, 20 (1969).
⁵ Ю. И. Кирюхин, Х. С. Багдасарьян, ДАН, 201, 389 (1971).
⁶ М. V. Alfimov, J. G. Batekha, Yu. B. Sheck, V. J. Gerko, Spectrochim. acta, 27A, 329 (1971).
⁷ Х. С. Багдасарьян, В. А. Кондратьев, Кинетика и катализ, 6, 777 (1965).
⁸ К. D. Cadogan, A. C. Albrecht, J. Chem. Phys., 43, 2550 (1965).
⁹ К. D. Cadogan, A. C. Albrecht, J. Phys. Chem., 72, 929 (1968).