УДК 541.11

в. и. пепекин, ю. а. лебедев, А. Я. Апин

ЭНЕРГИИ ДИССОЦИАЦИИ С — F- И С — С-СВЯЗЕЙ В α -ФТОРНИТРОПРОИЗВОДНЫХ МЕТАНА И ЭТАНА

(Представлено академиком Н. Н. Семеновым 25 IV 1972)

В работе экспериментально определены теплоты сгорания и испарения дифтординитрометана (I), 1,2-дифтортетранитроэтана (II), 1,1,2,2-тетрафтординитроэтана (IV) и фторпентанитроэтана (V). Термохимические данные наряду с известными из литературы исследованиями по кинетике термического разложения этих соединений позволили впервые оценить энтальпии образования фторнитроалкильных радикалов и энергии диссоциации связей углерод — фтор и углерод — углерод в α-фторнитропроизводных метана и этана.

Экспериментальное определение теплот сгораний соединений I-V проводилось по методике, описанной в работе (1). Тепловое значение калориметрической установки было определено равным 2558.2 ± 1.2 кал/град. Соединения I-IV сжигались в полиэтиленовых мешочках, что предотвращало потери веществ от испарения. Теплота сгорания полиэтиленовой пленки 1110.0 ± 1.5 кал/г.

Энтальпии сгорания $\Delta H_{\rm cr}^0$ соединений I — V приведены в табл. 1. При расчете теплот сгорания вводились поправки на сгоревшую проволочку, тепловыделение от полиэтиленовой пленки и образование азотной кислоты. Энтальпии сгорания соответствуют следующим уравнениям реакций:

$$F_2C(NO_2)_2(\mathcal{H}) + H_2O(\mathcal{H}) + aq \rightarrow 2[HF \cdot 30H_2O] + O_2 + N_2 + aq,$$
 (1)

FC
$$(NO_2)_2$$
 C $(NO_2)_2$ F $(K) + H_2O(K) + aq \rightarrow 2 [HF \cdot 30H_2O] + 2CO_2 + 2O_2 + 2N_2,$ (2)

$$F_{2}CNO_{2}CF_{2}NO_{2} (\mathfrak{K}) + 1,8H_{2}O (\mathfrak{K}) + aq \rightarrow 3,6 [HF \cdot 30H_{2}O] + +1,9CO_{2} + 0,1CF_{4} + 0,1O_{2} + N_{2} + aq,$$
(3)

$$O_2HCF_2C (NO_2)_2F (\pi) + 1,3H_2O (\pi) + aq \rightarrow 2,6 [HF \cdot 30H_2O] +$$

$$+1,9CO_2+0,1CF_4+1,1O_2+1,5N_2+aq,$$
 (4)

FC
$$(NO_2)_2$$
C $(NO_2)_3 + 0.5H_2$ O $(x) + aq \rightarrow [HF \cdot 30H_2O] + $+ 2CO_2 + 3O_2 + 2N_2 + aq.$ (5)$

Учитывая уравиения реакций сгорания (1-5) и принимая теплоты образования $H_2O(\pi)$ -68,317, CO_2 -94,05 ккал/моль, раствора [HF \cdot 30 H_2O] -77,01 (²) и CF_4 -223,0 ккал/моль (²), мы рассчитали энтальнии образования ΔH_f^0 исследуемых соединений в конденсированном состоянии (табл. 1).

Теплоты испарения соединений I-IV ($\Delta H_{\text{исп}}$, табл. 1) вычислены из температурной зависимости упругости насыщенных паров:

I
$$\lg P = 9.87 - \frac{2463.9}{T}$$
 (10 – 36.5°), (6)

II
$$\lg P = 11.5 - \frac{3280.4}{T} (24 - 50^{\circ}),$$
 (7)

III
$$\lg P = 11,38 - \frac{3540,9}{T} (30 - 70^{\circ}),$$
 (8)

IV
$$\lg P = 10.4 - \frac{3016.3}{T} (40 - 80^{\circ}).$$
 (9)

Соединение	$-\Delta H_{\mathrm{C}\Gamma}^{0}$	$-\Delta H_f^0$ (iff)	$\Delta H_{ m MCH}$	ΔH_f^0 (r)
$\begin{array}{l} F_2C(NO_2)_2 \ (\pi) \\ FC(NO_2)_2C(NO_2)_2F \ (\pi) \\ F_2CNO_2CF_2NO_2 \ (\pi) \\ FC(NO_2)_2CF_2NO_2 \ (\pi) \\ FC(NO_2)_2C(NO_2)_3 \ (\pip) \end{array}$	$\begin{array}{c} 73,3\pm1,4\\174,5\pm0,8\\143,8\pm0,4\\154,8\pm0,5\\193,8\pm1,4 \end{array}$	106,3 99,2 210,3 157,5 37,1	$ \begin{vmatrix} 9,9\pm0,2\\ 15,0\pm0,2\\ 16,2\pm0,2\\ 13,8\pm0,2\\ 16,5* \end{vmatrix} $	$ \begin{bmatrix} -96,4\pm1,6\\ -84,2\pm1,0\\ -194,1\pm0,6\\ -143,7\pm0,7\\ -20,6\pm2,0 \end{bmatrix} $

^{*} Теплота сублимации оценена по аналогии с учетом теплоты плавления,

С учетом теплот испарения были вычислены энтальпии образования $\Delta H_t^0(\mathbf{r})$ соединений в газовой фазе (табл. 1).

Величины энтальний образования а-фторполинитроалканов в сочетании с данными по кинетике их термического распада позволяют оценить энтальнии образования фторнитроалкильных радикалов.

Известно (3), что термический распад α-фторполинитроалканов протекает по радикальному нецепному механизму, первой стадией которого является разрыв С—N-связи:

$$F_2C(NO_2)_2 \rightarrow F_2\dot{C}NO_2 + NO_2, \tag{10}$$

$$FC(NO_2)_2C(NO_2)_2F \rightarrow FC(NO_2)_2CFNO_2 + NO_2, \tag{11}$$

$$FC (NO2)2C (NO2)3 \rightarrow FC (NO2)2\dot{C} (NO2)2 + NO2,$$
(12)

$$FC (NO2)3 \rightarrow F\dot{C} (NO2)2 + NO2.$$
 (13)

Энергии активации реакций (10)-(13), которые можно отождествить с энергиями C-N-связи, равны 47.4; 42.2; 36.5 и 41.9 ккал/моль соответственно с погрешностью ± 1.0 ккал/моль (³). Зная эпергии разрыва C-N-связей и энтальний образования соединений, мы вычислили теплоты образования фторнитроалкильных радикалов по уравнению

$$\Delta H_f^0(\mathbf{R}) = D(\mathbf{C} - \mathbf{NO}_2) + \Delta H_f^0(\mathbf{R} - \mathbf{NO}_2) - \Delta H_f^0(\mathbf{NO}_2),$$
 (14)

где $D({\rm C-NO_2})$ — энергия ${\rm C-N-c}$ вязи в соответствии с уравнениями (40) — (43) и $\Delta H_f{}^{\rm o}({\rm NO_2})$ — теплота образования ${\rm NO_2}$ -радикала, равная 8.0 ± 0.1 ккал/моль (4). При расчете теплоты образования фтординитрометильного радикала энтальния образования фтортринитрометана прицята равной -43.8 ± 0.6 ккал/моль (5).

Приводим величины теплот образований радикалов:

Радикал FĊ(NO₂)₂ F₂ĊNO₂ FĊ(NO₂)₂Ċ(NO₂)₂ FC(NO₂)₂ĊFNO₂
$$\Delta II_f{}^0$$
, ккал/моль $-9,9\pm1,7$ $-57\pm2,7$ $-7,9\pm3,1$ $-50,0\pm2,1$

Теплоты образования фторинтроалкильных радикалов наряду с известными величинами теплот образования тринитрометильного (49,8 ккал/моль) и пентанитроэтильного (64,7 ккал/моль) радикалов (6) позволяют оценить энергии диссоциации С—F- и С—C-связей в соединениях (I-V).

Расчет энергий связи проводили по уравнению:

$$D(C - F) = \Delta H_f^0(R) + \Delta H_f^0(F) - \Delta H_f^0(R - F),$$
 (15)

$$D(C - C) = \Delta H_f^0(R_1) + \Delta H_f^0(R_2) - \Delta H_f^0(R_1R_2).$$
 (16)

При расчетах теплота атомизации фтора принята равной 19,0 ккап/моль (1). Ниже приводим величицы эпергий С—F-связей:

Гоелинение
$$(NO_2)_3C$$
—F $(NO_2)_2FC$ —F $(NO_2)_2FC$ — $FC(NO_2)_2C(NO_2)_2$ —F $(NO_2)_3C$ — $C(NO_2)_3C$ —F $C($

Энергии разрыва С--С-связей

R_1-R_2	$\Delta H_f^0(\mathbb{R}_i)$, beau	$\Delta H_f^0\left({{ m R}_2} ight),$ rrah	ΔH_f^0 (R $_1$ R $_2$), ккал/моль	D (С—С), ккал
(NO ₂) ₃ C—C(NO ₂) ₃ FC(NO ₂) ₂ —C(NO ₂) ₃ FC(NO ₂) ₂ —C(NO ₂) ₂ F F ₂ CNO ₂ —FC(NO ₂) ₂ F ₂ CNO ₂ —F ₂ CNO ₂ F ₃ C—CF ₃	49,8 9,9 9,9 57,0 142,6 (7)	$\begin{array}{c} 49,8 \\ 49,8 \\ -9,9 \\ -9,9 \\ -57,0 \\ -112,6 \end{array}$	36,9 -20,6 -84,2 -143,7 -194,1 -321,0(7)	62,7 (6) 60,5 64,4 76,8 80,1 95,8

Погрешность определения энергий связи составляет ±4 ккал/моль. В табл. 2 для сопоставления приведены энергии разрыва С—С-связи в гексанитро- и гексафторотане. Из сравнения видно, что α-фторполнинтро-алканы по прочности связи углерод — углерод занимают промежуточное положение между этими двумя предельно насыщенными структурами.

Институт химической флзики Академии наук СССР Москва Поступило 20 IV 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

1 В. И. Пенекин, Ю. А. Лебедев и др., Изв. АН СССР, сер. хим., 1968, 1128.
2 І. Lacher, Н. Skinner, J. Chem. Soc. А, 1968, 1034. 3 Г. М. Назин, Г. Б. Манелис, Ф. И. Дубовицкий, Изв. АН СССР, сер. хим., 1968, 2631. 4 В. И. Веденеев. Л. В. Гурвич и др., Энергии разрыва химических связей. Потещиалы конизации и сродство к электрону, Изд. АН СССР, 1962. 5 М. F. Zimmer, R. А. Вобо et al. J. Chem. Eng. Data, 11, 577 (1966). 6 Ю. А. Лебедев, Е. А. Мирошинченко, Ю. К. Киобель, Термохимия интросоединений, «Наука», 1970. 7 Л. Соомбет, Е. Whittle, Trans. Farad. Soc., 63, 1394 (1967).