УДК 517.946

MATEMATHKA

Е. В. ВОРОНОВСКАЯ

ВОПРОСЫ ИНТЕРПОЛЯЦИИ И РАСПРЕДЕЛЕНИЯ ТОЧЕК ЧЕБЫШЕВСКОГО АЛЬТЕРНАНСА

(Представлено академиком Л. В. Канторовичем 19 VI 1972)

В наших статьях $\binom{1}{2}$ был предложен новый подход к проблемам лагранжевой интерполяции. Напомним постановку задачи и приведем из $\binom{1}{2}$ нужную нам теорему.

1. Пусть $f(x) \in C_{[0,1]}$ и $J_p(x)$ — ее алгебраический лагранжев полином. Представим процесс $f(x) - J_p(x) - (\pi)$ -процесс, при $p \to \infty$ в другой, эквивалентной форме:

$$f(x) - J_p(x) = [f(x) - Y_p^*(x)] - [J_p(x) - Y_p^*(x)], \tag{1}$$

$$f(x) - J_{\nu}(x) = F_{\nu}(x) - R_{\nu}(x) = F_{\nu}(x) - A_{\nu}Q_{\nu}(x), \tag{2}$$

где $Y_p^*(x)$ — полином наилучшего приближения к f(x) в чебышевской метрике, $\max_{x} |Q_p(x)| = 1$ (приведенный полином).

В форме (2) интерполируется $F_p(x)$ с той же матрицей, что и в форме (1). Очевидно, необходимое и достаточное условие равномерной сходимости процесса есть $A_p \to \infty$; обозначим такой процесс (π, w) . Все остальные (π) -процессы обозначим (π, \overline{w}) .

Теорема 1. Пусть $\{Q_{\nu}(x)\}_{0}^{\infty}$ — произвольно выбранная система приведенных полиномов. Составим для данной f(x) семейство процессов с параметром $(A_{\nu})_{0}^{\infty}$:

$$F_p(x) - A_p Q_p(x). (3)$$

А) Необходимое и достаточное условие, чтобы процесс (3) оказался (л)-процессом: для каждого р существуют p+1 чисел $\varrho_i^{(p)} \in [0,1]$ такие, что $F_p(\varrho_i^{(p)}) + A_pQ_p(\varrho_i^{(p)}) = 0; \ i=1,2,\ldots,\ p+1;$ тогда, так как не все $(\varrho_i^{(p)})$ в строчке суть нули $F_p(x)$, имеем

$$A_{\nu} = F_{\nu}(\rho_i^{(p)}) / Q_{\nu}(\rho_i^{(p)}).$$

Б) Пусть процесс (3) есть (л)-процесс; необходимое и достаточное условие того, чтобы он был и (л, w), следующее: если $[\rho_i^{(p)}]$ — интерполяционная матрица, то для одной (любой) инфинитарной точки $\rho^{(p)}$ из матрицы, не содержащейся инфинитарно (1) в таблице нулей $F_p(x)$ имеет место

$$|F_p(\rho^{(p)})| \ll |Q_p(\rho^{(p)})|.$$
 (4)

В) Если процесс (3) есть (л)-процесс, то необходимое и достаточное условие того, чтобы он был и (π, \overline{w}) следующее: в одной, хотя бы выборочно инфинитарной точке (1) $\rho^{(p)}$ из матрицы имеет место при m>0 и $\cosh(p)$

 $|Q_p(\rho^{(p)})| \le m|F_p(\rho^{(p)})|. \tag{5}$

Напомним введенное в (¹) понятие о главных ветвях и главных нулях $F_p(x)$, заключенной в полосе $\pm L_p$, где $L_p = \max_{[0,1]} |f(x) - Y_p^*(x)|$. Часть

графика $F_p(x)$ на $[\alpha, \beta] \subseteq [0, 1]$ названа главной ветвью при условиях: 1) $F_p(\alpha) = \pm L_p$, $F_p(\beta) = \mp L_p$ (разные знаки); 2) $|F_p(x)| < L_p$ при $\alpha < x < \beta$. Корень $F_p(x)$ на главной ветви назван главным нулем.

В дальнейшем систему $\{Q_p(x)\}$ выберем так, что при каждом p все корни $Q_p(x)$ суть главные нули $F_p(x)$ по одному на главных ветвях. Тогда при любом A_p процесс $F_p(x) - A_pQ_p(x)$ (нулевой процесс) дает p точек интерполяции. Для полноты матрипы и для определения A_p не хватает одной инфинитарной точки $\rho^{(p)}$, которая и определит характер пропесса.

2. Для дальнейшего отметим следующие вспомогательные оценки. Если $x \in [0, 1]$ и $\lambda_i \in [\alpha, \beta] \subset [0, 1]$, имеем

$$\max \left| \prod_{1}^{p} (x - \lambda_i) \right| \geqslant \begin{cases} (1 - \beta)^p & \text{при } \frac{1}{2} (\alpha + \beta) \leqslant \frac{1}{2}, \\ \alpha^p & \text{при } \frac{1}{2} (\alpha + \beta) \geqslant \frac{1}{2}. \end{cases}$$

Таким образом, при $\beta - \alpha = l$ равномерная (наименьшая) миноранта: $\binom{1}{2}(1-l)^p$ (в центре [0,1]) и повышается к краям до $(1-l)^p$.

Теорема 2. Если для f(x) имеется сегмент $[l_p] \subset [0, 1]$ длиной $l_p \leq 1/(1+2L_p^{-1/p})$, на котором хотя бы выборочно при $\tilde{p} \to \infty$ найдутся p главных нулей $F_p(x)$, то для f(x) гарантировано наличие процесса (x, \overline{w}) .

Доказательство. Строим процесс $F_{\nu}(x)-A_{\nu}Q_{\nu}(x)$, где все корни $Q_{\nu}(x)$ суть главные нули $F_{\nu}(x)$: $\sigma_{i}^{(p)} \in [l_{\nu}]$. Дополним интерполяционную матрипу точкой $\rho^{(p)} = \theta^{(p)} \in [l_{\nu}]$, где $|F_{\nu}(\theta^{(p)})| = L_{\nu}$. Тогда $A_{\nu} = L_{\nu} / |Q_{\nu}(\theta^{(p)})|$. Для получения процесса (π, \overline{w}) достаточно выполнения условия $|Q_{\nu}(\theta^{(p)})| \leq mL_{\nu}$ (хотя бы выборочно по p).

Имеем оценки

$$\mid Q_{\mathbf{p}}(\boldsymbol{\theta}^{(p)}) \mid \leqslant \max_{\mathbf{x} \in [l_{\mathbf{p}}]} \left| \prod_{\sigma_i \in [l_{\mathbf{p}}]} (x - \sigma_i^{(p)}) \right| \bigg/ \max_{\mathbf{x} \in [0, \, 1]} \left| \prod_{\sigma_i \in [l_{\mathbf{p}}]} (x - \sigma_i^{(p)}) \right| = \mathbf{I} \bigg/ \mathbf{II}.$$

Беря грубую мажоранту для I и равномерную миноранту для II, получим $I < l_p^p$; $II \ge (\frac{1}{2}(1-l_p))^p$.

Итак, требуется $(2l_p / (1-l_p))^p \le mL_p$. Отсюда $l_p \le 1 / (1+2/L_p^{2/p})$ при $\tilde{p} \to \infty$ (по выборке).

Теорема $2^{\mathbb{A}}$. Если для f(x) имеет место $\overline{\lim} L_{\mathfrak{p}}^{1/p} \geqslant 1/2$ и на [0, 1/2] при $\tilde{p} \to \infty$ найдутся не менее чем \tilde{p} главных нулей $F_{\mathfrak{p}}(x)$, то существует процесс (π, \overline{w}) и именно в нулевой форме.

Пусть $[l_p] = [0, l]$ (или [1-l, 1]), где $l \le 1/2$ и на [0, l] имеется не менее чем p главных нулей $F_p(x)$; здесь можно получить более сильные оценки, а именно: $II > (1-l)^p$; если выберем $\theta^{(p)} = 1/2l$, получим $I \le (1/2l)^p$; тогда требуемое условие для процесса (π, \overline{w}) есть $(1/2l(1-l))^p \le mLp$. Если положить l = 1/2, то требуется $(1/2)^p \le mLp$, или при $\tilde{p} \to \infty$, $L_p^{1/p} \ge 1/2$.

 $L_p^{1/p}\geqslant 1/2$. Замечание 1. Сегмент (l_p) не является закрепленным (по p) ни по длине, ни по положению на $[0,\ 1]$. Однако, если $\lim_p L_p^{1,p}>0$, то можно считать $[l_p]=[l]_p$, т. е. постоянной длины. К целой f(x) теорема 2 неприложима.

Замечание 2. Вид условий теоремы 2 напрашивается на использование результатов С. Н. Бернштейна (3). Для случая сегмента эти результаты таковы. Если f(x) аналитическая внутри эллипса с фокусами в точках 0 и 1 и имеет особенности на контуре, то $\overline{\lim} L_{\widetilde{p}}^{1,\widetilde{p}} = 1/R$, где R есть сумма осей эллипса.

С π е д с τ в и е. Пусть для f(x) все (n)-процессы суть u (n, \overline{w}) . Выберем $l \leq 1/(1+2L_p^{-1/p})$, предполагая $\lim_{p \to \infty} L_p^{-1/p} > 0$. Тогда на $[l]_p$ число

главных нулей $F_p(x)$ меньше p; следовательно, общее ux число $N_p < (1+2L_p^{-1/p})\, p.$ Если $\overline{\lim}\, L_p^{1/p} = 1/R,$ то по выборке $N_p < (1+2R)_p$.

3. В статье (²) была предложена классификация непрерывных на [0,1] функций, которой мы здесь будем придерживаться. Переходя к изучению хода строк $(L_p)_0^\infty$ и $(L_p^{1/p})_1^\infty$, сделаем некоторые замечания.

1) Теорема С. Н. Бернштейна (⁴) утверждает: какова бы ни была

1) Теорема С. Н. Бернштейна (4) утверждает: какова бы ни была строка $\alpha_0 \geqslant \alpha_1 \geqslant \ldots \geqslant \alpha_p \geqslant \ldots$ при $\alpha_p \to 0$, найдется $f(x) \subseteq C_{[0, 1]}$, для которой строка ее наилучних приближений $(L_p)_0^\infty$ совнадает с $(\alpha_p)_0^\infty$.

- 2) Тогда и только тогда $f(x) \in K_{\infty}$ (т. е. целая), если $\overline{\lim} L_p^{1/p} = 0$.
- 3) Для любой не аналитической f(x) имеем $\overline{\lim} L_p^{1/p} = s$.
- 4) Если $\lim_{p \to \infty} L_p^{1/p} < \lim_{p \to \infty} L_p^{1/p}$, то необходимо наличие в строке (L_p) инфинитарных повторений.

Покажем, что в любых классах имеются функции, у которых $\lim_{n \to \infty} L_p^{1/p}$,

т. е. которые по выборке при $p \to \infty$ ведут себя как целые функции. При мер 1 Разбиваем натуральные числа на группы. p-я групп

Пример 1. Разбиваем натуральные числа на группы, p-я группа заканчивается числом p! Строка (L) строится с повторением в каждой группе и определяет некоторую f(x).

Пусть
$$0 < a < 1$$
; $1 | 2 | 3,4,5,6 | \dots | p! + 1, \dots, (p+1)! | \dots$,

(L)
$$a | a^2 | a^{3} | \dots a^{3!} | \dots | a^{(p+1)!}, \dots, a^{(p+1)!} | \dots$$

Соответственная строка радикалов в (p+1)-й группе такова:

$$a^{(p+1)} / (p!+1) < a^{(p+1)!} / (p!+2) < \ldots < a^{(p+1)!} / (p+1)$$
.

Выборка из последних членов в каждой группе дает $\overline{\lim} L_p^{1/p} = a$, выборка из первых членов: $\underline{\lim} L_p^{1/p} = 0$. Итак, f(x) аналитическая и, если 1/a = R, то $f(x) \in K_R$.

Пример 2. При разбивке номеров последнее число в k-й группе есть $p_k = 2^{p_k^2}$ или $p_{k-1} = (\log_2 p_k)^{\frac{n}{2}}, \quad k = 1, 2, 3, \dots$ Соответственно (L_p) имеют инфинитарные повторения по группам, а именно:

Выборка из первых членов в группах дает $L_p^{1/p} = \binom{1/2}{2}^{p_{k-1}^2/(p_{k-1}+1)} \to 0$. Выборка из последних членов: $L_p^{1/p} = \binom{1}{2}^{p_{k-1}^2/p_k} = \binom{1}{2}^{(\log p_k)/p_k} \to 1$. Так как здесь $L_p = O(1/p)$, то f(x) принадлежит классу не выше $K^{(1)}$. Можно аналогичным приемом строить (L_p) с заранее заданными $\lim_{p \to \infty} L_p^{1/p}$ и $\overline{\lim} L_p^{1/p}$.

Теорема 3. Пусть для f(x) имеем $Y_p^*(x)$ точно степени p. Необходимое и достаточное условие того, чтобы разность $f(x) - Y_p^*(x)$ имела ровно N+2 точек альтернанса $\pm L_p$, где $p \le N < \infty$, состоит в следующем: в строке $(L_p)_0^\infty$ для f(x) имеет место

$$\dots L_{p-1} > L_p = L_{p+1} = \dots = L_N > L_{N+1}, \dots,$$
 (6)

au. е. имеется участок с повторениями точно ст р до N.

1) Пусть выполнено (6); положим $Y_p^*(x), \ldots, Y_N^*(x)$ — соответственные полиномы наилучшего приближения. Ввиду оценки $\max |f(x) - Y_p^*(x)| = L_N$, $Y_p^*(x)$ есть наилучший (единственный) во всем множестве $\{P_N(x)\}$. Следовательно, число альтернансов есть N+2, и не выше.

2) Если $f(x) - Y_p^*(x)$ имеет ровно N+2 альтернирующих отклонений, то достаточно, чтобы в $\{P_N(x)\}$ полином наилучшего приближения был $Y_p^*(x)$, а тогда $L_p = L_{p+1} = \ldots = L_N$ и не далее.

Замечание. В каждом классе существуют функции, для которых любой данный полином $P_p(x)$ есть полином наилучшего приближения на $[0,\,1]$, и притом с любым произвольно заданным числом $N_p+2 \geqslant p+2$ точек альтернанса. Для этого достаточно, взяв любую $f(x) \in C_{[0,1]}$, составить $f(x)-Y_N^*(x)=[f(x)+P_p(x)-Y_N^*(x)]-P_p(x)=\Phi(x)-P_p(x)$, и $P_p(x)$ дает наилучшее приближение к $\Phi(x)$ с не менее чем N+2 точками отклонений.

4. Вопрос о распределении точек альтернанса на основном сегменте затронут в теореме М. И. Кадеца (5). В приложении к случаю $f(x) \in C_{[0,1]}$ из этой теоремы следует утверждение: если для $p=0,\ 1,\ 2,\ldots$ составить таблицу всех точек отклонения $\pm L_p$ для $f(x)-Y_p^*(x)$ и выделить из нее произвольную треугольную матрицу по p+2 точек в каждой строке, дающих альтернанс, то всегда найдется выборка строк $p_k \to \infty$, в которых точки измельчают сегмент [0,1].

Возможность наличия неизмельчающих выборок легко обнаружить: пусть f(x) такова, что строка (L_p) в своей выборке $(L_{p_n})_{k=1}^{\infty}$ дает для $f(x) - Y_{p_k}^{\bullet}(x) \cdot N_{p_k} = 2p_k + 4$ точек альтернанса; тогда на одном из полусегментов $[0, \frac{1}{2}]$; $[\frac{1}{2}, 1]$ при $k \to \infty$ имеются не менее чем $p_k + 2$ та-

ких точек.

Остается открытым вопрос: имеется ли все же для любой f(x) такая выборочная матрица альтернирующих точек, которая при любом $p \to \infty$ измельчает [0, 1]?

Лепинградский электротехнический институт связи им. М. А. Бонч-Бруевича

Поступило 12 VI 1972

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Е. В. Вороновская, ДАН, **202**, № 1 (1972). ² Е. В. Вороновская, ДАН, **202**, № 2 (1972). ³ С. Н. Бернштейн, Экстремальные свойства полиномов, 1937. ⁴ С. Н. Бернштейн, Собр. соч., **2**, Изд. АН СССР, 1954. ⁵ М. И. Кадед, УМН, **15**, в. 1 (91) (1960).