УДК 517.946.9

МАТЕМАТИКА

А. И. АЧИЛЬДИЕВ

О НЕКОТОРЫХ КРАЕВЫХ ЗАДАЧАХ ДЛЯ ВЫРОЖДАЮЩИХСЯ НА ГРАНИЦЕ ЭЛЛИНТИЧЕСКИХ УРАВНЕНИЙ

(Представлено академиком А. Н. Тихоновым 15 V 1972)

Вырождающимся эллиптическим уравнениям посвящено много работ, обзор основных результатов которых имеется в монографии (1). В подавляющем большинстве их коэффициент при искомой функции имеет знак, противоположный знаку квадратичной формы характеристической части уравнения. В исследованиях Л. Г. Михайлова (2) рассматриваются краевые задачи без ограничений на упомянутый знак. В работах С. Г. Михлипа (3) и М. И. Вишика (4) изучены свойства операторов, соответствующих краевым задачам для вырождающихся эллиптических уравнений. Статья (5) посвящена изучению первой краевой задачи и задачи на собственные функции для эллиптического уравнения, вырождающегося на границе, причем порядок вырождения ограничен условием суммируемости некоторой отрицательной степени дискриминанта соответствующей квадратичной формы. В работе (6) указан способ нахождения всех собственных значений краевых задач типа Дирихле для вырождающихся на границе плоской области эллиптических уравнений и доказывается полнота найденной системы регулярных собственных функций. В статье эти результаты обобщены на п-мерную область и рассмотрены соответствующие неоднородные краевые задачи без ограничения на знак коэффициента уравнения при искомой функции вне многообразия вырождения.

Пусть в эвклидовом пространстве E_n дана ограниченная открытая область G, непрерывная граница Γ которой состоит из двух частей: поверхности γ класса $C_{2, \alpha}$, см. (7), и поверхности вырождения γ_0 . Обозначим через $\rho = \rho(x, \gamma_0)$ расстояние от точки $x = (x_1, x_2, \ldots, x_n)$ до γ_0 . Пусть G_{ε} — область, содержащаяся в G, ограниченная поверхностью $\Gamma_{\varepsilon} = \gamma \cap (\rho \geqslant \varepsilon) \cup \gamma_{\varepsilon}$ класса $C_{2, \alpha}$, где точки x поверхности γ_{ε} удовлетворяют неравенствам $\varepsilon \leqslant 2\rho(x, \gamma_0) \leqslant 2\varepsilon$ и ε достаточно малое положительное число, причем $G_{\varepsilon} \subset G_{\varepsilon}$, при $\varepsilon'' < \varepsilon'$. Пусть Q_{ε} — открытая область, содержащаяся в $G \setminus G_{\varepsilon}$, ограниченная поверхностью \varkappa_{ε} и поверхность $\varkappa_{\varepsilon} \setminus \bar{\gamma}_0$ принадлежит классу $C_{2, \alpha}$.

Рассмотрим в области G эллиптическое дифференциальное уравнение

$$Lu = -(a_{ij}u_{x_{i}})_{x_{j}} + c(x)u(x) = \lambda\sigma(x)u(x) + f(x).$$
 (1)

Здесь и всюду в дальнейшем по паре одинаковых индексов ведется суммирование от 1 до n. Предположим, что $a_{ij}=a_{ji}$ и квадратичная форма $a_{ij}(x)\,\zeta_i\zeta_j$ положительно определена в любой замкнутой области $\overline{G}_{\varepsilon}$. Коэффициенты $a_{ij}(x) \in C_{1,\;\alpha}(\overline{G} \setminus \overline{\gamma}_0)$, а функции c(x)>0, $\sigma(x)>0$ и f(x) принадлежат классу $C_{0,\;\alpha}(\overline{G} \setminus \overline{\gamma}_0)$. Функция $\sigma(x)$ суммируема в области G и равномерно относительно $\overline{\gamma}_0$ выполняется соотношение

$$\lim_{\epsilon \to 0} \frac{\sigma(x)}{c(x)} = 0. \tag{2}$$

Заметим, что функция $c\left(x\right)$ может быть даже несуммируемой в области G.

Из равенства (2) для любого вещественного λ следует существование положительного числа $\delta(\lambda)$, что в $Q_{\delta(\lambda)}$ выполняется неравенство

$$c(x) - \lambda \sigma(x) \geqslant 0. \tag{3}$$

Условие D. Для любой точки $x_0 \subseteq \bar{\gamma}_0$ существует функция v(x), называемая «барьером», обладающая свойствами:

- а) v(x) непрерывна в некоторой окрестности $\tau(x_0) \subset \overline{G}$ точки x_0 ;
- б) v(x) > 0 в $\tau(x_0)$, кроме точки x_0 , и $v(x_0) = 0$;

в) $Lv > q_0c(x)$ всюду в $\tau(x_0)$, где q_0 — некоторое положительное число-Случаи существования «барьера» для вырождающихся уравнений указаны в $\binom{4,8,9}{2}$.

указаны в $\binom{1}{8}, \binom{8}{9}$. Условие E. Для любого вещественного λ найдется такое число $\delta(\lambda)$, что в любой области $Q_{\epsilon}, \epsilon \leq \delta(\lambda)$, однородная краевая задача в классе функций, ограниченных в Q_{ϵ} , непрерывных в $Q_{\epsilon} \setminus \bar{\gamma}_{0}$, принадлежащих $C_{2}(Q_{\epsilon})$, удовлетворяющих в Q_{ϵ} уравнению

$$Lu = \lambda \sigma(x) u(x) \tag{4}$$

. и подчиняющихся краевому условию

$$u(x)|_{x \sim \overline{y}_0} = 0, \tag{5}$$

имеет только нулевое решение.

Условие E будет выполнено, если для любого вещественного λ существует положительная в $Q_{\delta(\lambda)}$ функция $w_{\lambda}(x)$, равномерно относительно $\bar{\gamma}_0$ стремящаяся к бесконечности при $x \to \gamma_0$, принадлежащая $C_2(Q_{\delta(\lambda)})$ и удовлетворяющая в $Q_{\delta(\lambda)}$ неравенству $Lw_{\lambda} - \lambda \sigma w_{\lambda} > q(\lambda) c(x)$, где $q(\lambda) -$ положительное число. Случаи существования функции $w_{\lambda}(x)$ указаны в $\binom{1}{s}$, $\binom{s}{s}$.

В зависимости от того, какое из условий выполнено, рассмотрим следующую задачу на собственные значения.

Задача D_0 [E_0]. Найти те значения параметра λ (собственные значения), для которых существуют отличные от тождественного нуля собственные функции $u(x) \in C_2(G)$, удовлетворяющие в области G уравнению (4), непрерывные в замкнутой области G [ограниченные в G, непрерывные в $G \setminus \bar{\gamma}_0$] и подчиняющиеся краевому условию

$$u(x)|_{r} = 0 [u(x)]_{r} = 0].$$
 (6)

Обозначим через $L_2(\Omega, \sigma)$ гильбертово пространство измеримых функций g(x), квадраты которых, умноженные на $\sigma(x)$, суммируемы в области Ω . Норму g(x) в $L_2(\Omega, \sigma)$ введем обычным способом:

$$|g|_{L_2(\Omega, \sigma)} = \left(\bigvee_{\Omega} g^2(x) \circ (x) dx \right)^{1/2}$$

Теорема 1. Пусть выполнено условие D [E], квадратичная форма $a_i \zeta_i \zeta_j$ положительно определена в любой замкнутой области $\overline{G}_{\varepsilon} \in C_{2..\alpha}$, коэффициенты $a_{ij}(x) \in C_{1..\alpha}(\overline{G} \setminus \overline{\gamma}_0)$, функции c(x) > 0, $\sigma(x) > 0$ и принадлежат классу $C_{0, \alpha}(\overline{G} \setminus \overline{\gamma}_0)$. Пусть функция $\sigma(x)$ суммируема в G и выполняется условие (2).

Тогда однородная задача D_0 $[E_0]$ имеет счетную неубывающую с ростом номера последовательность положительных собственных значений $\lambda^{(k)}$ с единственной предельной точкой в бесконечности и соответствующая им система собственных функций $u^{(k)}(x)$ является полной ортонормированной в гильбертовом пространстве $L_2(G,\sigma)$.

Доказательство этой теоремы осуществляется при помощи следующих регулярных задач. Пусть $\lambda_{\varepsilon}^{(k)}$ является k-м собственным значением, а $u_{\varepsilon}^{(k)}(x) \equiv C_2(\overline{G}_{\varepsilon})$ является соответствующей собственной функцией, удовлетворяющей в области G_{ε} уравнению

$$Lu_{\varepsilon}^{(k)} = \lambda_{\varepsilon}^{(k)} \sigma(x) u_{\varepsilon}^{(k)}(x)$$
 (7)

$$u_{\varepsilon}^{(k)}(x)|_{\Gamma_{\bullet}} = 0. \tag{8}$$

Известно (7, 10, 11), что для любого достаточно малого $\varepsilon > 0$ существует счетная неубывающая с ростом номера к последовательность собственных значений $\lambda_{\epsilon}^{(k)}$ с единственной предельной точкой в бесконечности, и существует соответствующая им полная ортонормированная в $L_2(G_\varepsilon, \sigma)$ система собственных функций $u_\varepsilon^{(k)}(x) \equiv C_{2,\alpha}(\overline{G}_\varepsilon)$. Из минимально максимального принципа (10, 11) следует выполнение неравенства

$$\lambda_{\varepsilon''}^{(k)} \leqslant \lambda_{\varepsilon'}^{(k)}$$
 при $\varepsilon'' < \varepsilon'$. (9)

 $\lambda_{\varepsilon''}^{(k)} \leqslant \lambda_{\varepsilon'}^{(k)}$ при $\varepsilon'' < \varepsilon'$. (9) Следовательно, при ε , монотонно стремящемся к нулю, существует $\lim \lambda_{\mathbf{\epsilon}}^{(k)} = \lambda^{(k)}, \quad k = 1, 2, \dots$

Так же как и в статье (6), доказывается, что это $\lambda^{(k)}$ является собственным значением однородной задачи (4), (6). Соответствующую собственную функцию $u^{(k)}(x)$ можно получить, привлекая априорные оценки (7), как предел сходящейся в $\overline{G}\setminus \overline{\gamma}_0$ вместе с первыми и вторыми производными последовательности $u_{\varepsilon_k}^{(k)}(x)$, $\{\varepsilon_k\} \subset \{\varepsilon_{k-1}\}$. Доказательство полноты пайденной системы фупкций $u^{(k)}(x)$ в $L_2(G,\sigma)$ проводится, как в (6).

Теорема 2. Если выполнены все условия теоремы 1, то система coбственных значений $\lambda^{(k)}$, определенных равенством (10), содержит все cobcreeнные значения задачи $D_{\scriptscriptstyle 0}$ $[E_{\scriptscriptstyle 0}]$ и cooreercreyющая система cobcrвенных подпространств, натянутых на найденные собственные функции $u^{(k)}(x)$, содержит все собственные подпространства указанной задачи.

Рассмотрим следующие неоднородные краевые задачи.

3 а д а ч а D [E]. Найти функцию $u(x) \subseteq C_2(G)$, удовлетворяющую в области G уравнению (1), непрерывную в замкнутой области \overline{G} [ограниченную в G, непрерывную в $\overline{G}\setminus \overline{\gamma}_0$] и подчиняющуюся краевому условию

 $u(x)|_{\mathbf{r}} = \varphi(x) \quad [u(x)|_{\mathbf{r}} = \varphi(x)].$

Теорема 3. Пусть выполнены все условия теоремы 1, ограничено в области G отношение f(x) / c(x), функция $f(x) \in C_{0,\alpha}(\overline{G} \setminus \overline{\gamma}_0)$ и функция $\varphi(x)$ непрерывна на $\Gamma[\varphi(x)$ ограничена и непрерывна на $\gamma]$.

Тогда: а) Если д не является собственным значением однородной задачи D_0 [E_0], τ . e. $\lambda \neq \lambda^{(h)}$ из (10) ни при каком $k=1, 2, \ldots$, то существует и притом единственная функция $u(x) \in C_{2,\alpha}(G)$, непрерывная з области \overline{G} [ограниченная в G, непрерывная $\overline{G}\setminus \overline{\gamma}_0$], удовлетворяющая в G уравнению (1) и подчиняющаяся условию (11).

 δ) Если λ является собственным значением задачи $D_{\scriptscriptstyle 0}$ $[E_{\scriptscriptstyle 0}],$ au. е. $\lambda = \lambda^{(p+i)}$ из (10); $i = 0, 1, \ldots, q-1, \lambda^{(p-1)} < \lambda < \lambda^{(p+q)}$, то для разрешимости задачи D[E] необходимо и достаточно выполнения следующих д условий:

$$\int_{G} u_0(x) u^{(p+i)}(x) \, \mathfrak{s}(x) \, dx = 0, \quad i = 0, 1, 2, \dots, q-1,$$

 $r\partial e\ u_{\scriptscriptstyle 0}(x) = e\partial u$ нственное решение за ∂ ачи $D\left[E\right]$ при $\lambda = 0.$ Отдел математики с Вычислительным цептром Академии наук ТаджССР Душапбе

Поступило 15 V 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА ¹ М. М. Смирнов, Вырождающиеся эллиптические и гиперболические уравнения, «Наука», 1966. ² Л. Г. Михайлов, Новый класс особых интегральных уравния, «Наука», 1966. ² Л. Г. Михайлов, Новый класс особых интегральных уравнений и его применение к дифференциальным уравнениям с сингулярными коэффициентами, Душанбе, 1963. ³ С. Г. Михлин, Вестн. Ленингр. унив., 3, № 8, 19 (1957). ⁴ М. Й. Вишик, Математич сборн., 35 (77), 3, 513 (1954). ⁵ Каги шаѕа Ѕиги ki, Publ. Res. Inst. Math. Sci., Ser. A, 3, № 3, 299 (1968). ⁶ А. И. Ачильдиев, Сибирск. матем. журн., 12, № 1, 13 (1971). ⁷ О. А. Ладыженская, Н. Н. Уральцева, Линейные и квазилинейные уравнения эллиптического типа, «Наука», 1964. ⁸ М. В. Келды ш, ДАН, 77, № 2, 181 (1951). ⁹ Г. Н. Яковлев, Дифференциальные уравнения, 4, № 1, 140 (1968). ¹⁰ С. Г. Михлин, Вариационные методы в математической физике, М., 1957. ¹¹ Р. Курант, Д. Гильберт, Метолы математической физике, М., 1957. ¹¹ Р. Курант, Д. Гильберт, Метолы математической физике, М., — Л., 1951. тоды математической физики, 1, 2, М.— Л., 1951.