УДК 543.831

MATEMATHKA

ю. лисина

ПРОДОЛЖЕНИЕ ОТОБРАЖЕНИЙ И ФАКТОРИЗАЦИОННАЯ ТЕОРЕМА

(Представлено анадемиком П. С. Александровым 5 IV 1972)

Целью настоящей статыи является, во-первых, дать некоторые факторизационные теоремы, связанные с известной задачей продолжения отображений $f\colon A\to Y$ с замкнутых множеств A топологических пространств X из некоторых классов T_α в метризуемые пространства Y из соответствующих классов M_α , во-вторых, для некоторых из этих классов T_α охарактеризовать в классе всех метризуемых пространств те пространства Y, для которых вериа факторизационная теорема, а также охарактеризовать один из классов T_α с помощью факторизационной теоремы.

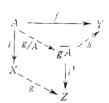
Известная теорема Куратовского — Дугунджи (1,2), доказанная в классе метризуемых пространств, была обобщена на класс пормальных топологических пространств ((3), стр. 630). При этом использовался результат одной довольно громоздкой теоремы Катетова ((4), стр. 510). В действительности, эта теорема имеет много различных обобщений на самые разнообразные классы T хаусдорфовых пространств. Основными из них нам представляются следующие: T_4 — пормальные, T_5 — коллективно-нормальные, T_6 — нормальные M-пространства в смысле Мориты ((5), стр. 379).

Эти обобщения можно получить с помощью следующей факторизационной теоремы типа Мардежича — Пасыпкова (6).

Теорема 1. Для любого пространства X из класса T_{α} , $\alpha = 4, 5, 6$, и любого отображения $f: \Lambda \to Y$, где Λ замкнуто в X, в данное метризуемое пространство Y из соответствующего класса M_{α} существуют отображения $g: X \to Z$ и $h: gA \to Y$, удовлетворяющие следующим условиям:

- а) Z метризуемо;
- $f = h |_{g_A} \circ g |_A$
- B) $w(Z) \leq w(Y)$;
- r) $\dim (Z \setminus gA) \leq r_X \dim (X \setminus A);$
- д) dim $gA \leq \dim A$.

Поясним сказанное. Классы T_{α} определены выше, классы M_{α} являются следующими: M_4 — метризуемые сепарабельные абсолютные G_b , M_5 — метризуемые абсолютные G_b , M_6 — любые метризуемые пространства. Условне б) означает коммутативность днаграммы



здесь через i, i' обозначены вложения. Через w мы обозначаем вес пространства, а через \dim — размерность, определенную с помощью покрытий. Размерностная характеристика r_x \dim определяется следующим образом:

$$r_X \dim H = \sup_{F = \overline{F} \subset H} \dim F.$$

Если при некоторых условиях существует такая окрестность OA и отображения $g: OA \to Z$ и $h: \overline{gA} \to Y$, обладающие свойствами а) — д), скажем, что выполнена докальная факторизационная теорема.

Замечание 4. В теореме 1 нормальные пространства можно заменить на вполне регулярные, только вместо замкнутых множеств A рассматри-

вать вполне замкнутые множества (7).

Сформулируем две ограничительные теоремы, из которых будет видио. что всякое серьезное увеличение класса T_{a} пространств X влечет заметное сокращение класса M_{σ} метризуемых пространств Y, для которых справедлива факторизационная теорема.

Теорема 2. Если для метризуемого пространства У справедлива локальная факторизационная теорема для всех пространств X из класса T_a ,

 $\alpha=4,5,$ то Y принадлежит соответствующему классу M_{α} .

Теорема 3. Если для фиксированного пространства Х выполнена локальная факторизационная теорема для всех метризуемых пространств Ү из класса M_5 , то X принадлежит классу T_5 .

Для доказательства факторизационной теоремы в случае $\alpha = 6$ понадобятся следующие теоремы.

Теорема 4. Выпуклые подмножества банахова пространства являются абсолютными экстензорами в классе нормальных М-пространств.

Теорема 5. Для любого паракомпактного М-пространства X, для любого отображения $f: X \to Y$ в метризуемое пространство Y существует такое метризуемое пространство Z, такое отображение $h\colon Z\to Y$ и такое совершенное отображение $g: X \to Z$, что $f = h \circ g$.

Замечание 2. Известно, что класс паракомпактных М-пространств

совиадает с классом паракомпактных перистых пространств (8).

Теорема 4 вытекает из теоремы 5 и паракомпактификации М-пространств в силу следующего: для любого вполне регулярного пространства Xпополнение μX ((9), стр. 511), обладающее существует шими свойствами:

1) $\overline{X} = \mathfrak{u}X$:

2) для любого отображения $f: X \to Y$ в метризуемое пространство Y существует продолжение ext $f: \mu X \to Y$. В случае M-пространств μX является паракомпактным пространством ((9), стр. 512, теорема 5).

Из теорем 1 и 2 можно получить много различных следствий, связаяных с задачей продолжения отображений. Самое интересное из них нам представляется следующее обобщение теоремы Куратовского – Дугунджи:

Теорема 6. Чтобы для всякого нормального М-пространства Х всякое отображение $f: A \to Y$ в данное метризуемое пространство Y, где A замкнуто в X, а $r_X \dim (X \setminus A) \leq n+1$, можно было продолжить в отображение $F: X \to Y$ (соответственно $F: OA \to Y$), необходимо и достаточно, чтобы Yбыло связным и локально-связным (соответственно локально-связным) в размерности п.

В заключение выражаю искреннюю благодарность и признательность проф. Ю. М. Смирнову за помощь и поддержку.

Университет Дружбы народов им. П. Лумумбы Москва

Поступило 29 HI 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ R. Куратовский, Тонология, **2**, M., 1969. ² J. Dugundji, Comp. Math., **13**, 229 (1958). ³ V. Moncuso, Canad. J. Math., **19**, 629 (1967). ⁴ M. Katetov, Czechosłov, Math. J., **6** (81), 485 (1956). ⁵ K. Morita, Math. Ann., **154**, 365 (1964). ⁶ Б. А. Пасынков, Fund. Math., **60**, 285 (1967). ⁷ Ю. М. Смирнов, Матем. сборн., **38** (80), 271 (1956). ⁸ A. B. Архангсльский, Матем. сборн., **67**, 55 (1965). ⁹ K. Morita, Proc. Japan Acad., **60**, 511 (1970).