УДК 577.45.021

БИОХИМИЯ

П. В. ГУЛАК, Ю. П. КОЗЛОВ, И. М. ЛИМАРЕНКО, А. Г. ТРЕТЬЯК, Е. В. БУРЛАКОВА

ОБРАЗОВАНИЕ СВОБОДНЫХ РАДИКАЛОВ ПРИ ФЕРМЕНТАТИВНОМ ГИДРОЛИЗЕ АТФ

(Представлено академиком С. Е. Севериным 15 VI 1972)

Уровень свободных радикальных (с.р) процессов характеризует физиологическое состояние клеток и тканей. Так, было установлено, что при возникновении и распространении возбуждения по нерву имеют место химические процессы, в ходе которых образуются с.р. $\binom{1}{2}$. Была также показана зависимость уровня с.р. в нервном волокне от интенсивности протекающих в нем процессов $\binom{3}{4}$.

Целью данной работы является исследование радикалообразования при различных функциональных состояниях $Na^+ - K^+-AT\Phi$ азы нейролеммы. Для лучшего понимания явлений, наблюдаемых при исследовании транспортной $AT\Phi$ азы, была поставлена задача изучения общности явления радикалообразования при ферментативном гидролизе $AT\Phi$ с участием ферментов различной природы.

Микросомальную фракцию седалищных нервов травяной лягушки получали по модифицированному методу Скоу (5); модификация заключалась в применении трис-буфера, рН 7,6. Саркоплазматический ретикулум,

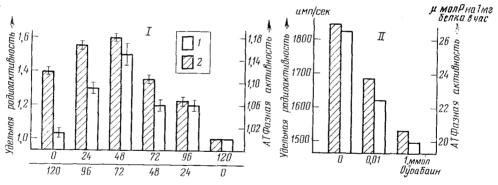


Рис. 1. Зависимость АТФазной активности и прививки АА-С¹⁴ в микросомах седалищных первов лягушки от ионного состава среды инкубации (I) и от концентрации оуабанна в среде инкубации (II). I — АТФазная активность, 2 — удельная радиоактивность. Состав среды инкубации для I: микросомы 35—40 µг белка на 1 мл; АТФ 2,5 мM; гистидин 14 мM; MgCl $_2$ 2,5 мM (NaCl + KCl) 120 мM АА-С¹⁴ 0,75 µС/мл, рН 7,2, t = 20°; для II: микросомы 6 µг белка на 1 мл, АТФ 2,5 мM, трис-HCl 10 мM, MgCl $_2$ 2,5 мM, NaCl 48 мM, KCl 72 мM; АА-С¹⁴ 0,75 µС/мл, рН 7,2, t = 20°

обладающий Ca²⁺-ATФазной активностью, получали по методу, описанному Ритовым (⁶). Миозип из мышц голубя получали по методу Бейли (⁷).

Концентрацию белка определяли по методу Лоури (⁸). Концентрацию ортофосфата определяли по методу Уаль-Малерба и Грина (⁹). Регистрацию с.р. проводили методом привитой сополимеризации (¹⁰), для сополимеризации с полимерами ферментов использовали акриламид, меченный по углероду (АА-С¹⁴). Радиоактивность препаратов измеряли жидкостным сцинтилляционным методом на спектрометре ABACSL40 4K. Детектирова-

ние хемилюминесценции проводили с помощью стандартного фотоэлек-

тронного умножителя ФЭУ-39.

Для определения в микросомах седалищных нервов лягушки ATФазы, ферментативная активность которой зависит от концентраций ионов Na⁺ и K⁺, а также для определения зависимости интенсивности включения AA-C¹⁴ в полимеры микросом от ферментативной активности мембранных ATФаз проведена серия экспериментов, в которых микросомы инкубировали в средах, различающихся по отношению концентраций ионов Na⁺ и K⁺ при постоянстве суммарной концентрации одновалентных катионов.

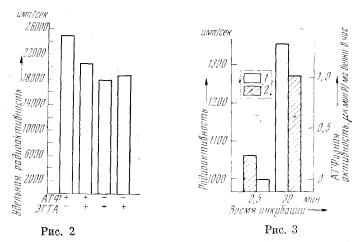


Рис. 2. Зависимость включения AA-C¹⁴ от ферментативной активности Ca²⁺-ATФазы. Состав среды инкубации: Ca²⁺-ATФаза 0,2 мг белка на 1 мл, ATФ 0,5 мM, имидазол 8 мM, NaCl₂ 80 мM, MgCl₂ 2 мM, AA-C¹⁴ 0,75 μ C/м Λ , pH 7,2; $t=25^{\circ}$

Рис. 3. Зависимость гидролиза АТФ и прививки АА-С¹4 в растворе мнозина от времени инкубации. Состав среды инкубации: мнозин 1 мг/мл, АТФ 0,5 мM, трис-HCl 5 мM, CaCl₂ 0,1 мM, KCl 0,3 мM, АА-С¹4 0,75 μ С/мл, рН 7,6; $t=25^\circ$. I — АТФазная активность, 2 — радиоактивность

Результаты измерений радиоактивности и АТФазной активности в пробах каждого эксперимента нормировали, соответствующие нормированные величины всех экспериментов обрабатывали статистически (доверительная вероятность выбранных нами доверительных пределов $\alpha \simeq 0.8$); полученные данные представлены на рис. 1, I.

Удельная радиоактивность в разных экспериментах была в пределах $1 \cdot 10^{-2} \div 1 \cdot 10^{-1}$ µC на 1 мг белка; АТФазная активность изменялась в пределах $7.7 \div 50$ µмол. $P_{\rm neopr}$ на 1 мг белка в час (в зависимости от препа-

рата).

Из полученных данных следует, что увеличение АТФазной активности сопровождается увеличением включения метки. Экстремальная зависимость АТФазной активности микросом от соотношения концентраций ионов Na⁺ и K⁺ косвенно свидетельствует о наличии в них Na⁺ — K⁺-АТФазы.

Для прямого определения специфической Na⁺ — K⁺-АТФазной активности микросомальной фракции седалищных первов лягушки в среду инкубации микросом с АТФ добавляли оуабаин; параллельно определяли сополимеризацию AA-C¹⁴.

Результаты эксперимента представлены на рис. 1, II. Разница между $AT\Phi$ азной активностью в среде без оуабаина и $AT\Phi$ азной активностью в среде с 1 мM оуабаином принята за специфическую $Na^+ - K^+$ - $AT\Phi$ азную активность и составляет $\simeq 25\,\%$ от общей $AT\Phi$ азной активности микросом.

Увеличение АТФазной активности сопровождается увеличением включения метки в полимеры микросом, как и в предылущем случае.

Для определения общности явления радикалообразования при ферментативном гидролизе ATФ исследовали сополимеризацию AA-C¹⁴ с биополимерами саркоплазматического ретукулума мышц кролика, а также с миозином из мышц голубя. Для подавления Ca²⁺-A'ГФазной активности в среду инкубации саркоплазматического ретикулума добавляли ЭГТА — специфический комплексон ионов Ca²⁺. Инкубацию проводили при 25°. Реакцию останавливали охлаждением до 0°. Результаты экспериментов представлены на рис. 2 и 3. Ферментативный гидролиз АТФ в обоих случаях сопровождался специфическим включением AA-C¹⁴ в биополимеры ферментов, как и в случае каталитической активности Na⁺ — K⁺-ATФазы.

На основании этих данных можно предположить общность явления ра-

дикалообразования при ферментативном гидролизе АТФ.

Косвенным подтверждением возникновения с.р. при ферментативном гидролизе $AT\Phi$ является обнаруженная нами хемилюминесценция систем ($Ca^{2+}-AT\Phi$ азы $+AT\Phi$) и (миозин $+AT\Phi$). Состав сред инкубации отличался от указанных выше отсутствием AA- C^{14} , а в случае Ca^{2+} - $AT\Phi$ азы — еще и присутствием 0.1% тритона X-100.

Вполне возможно, что причиной возникновения возбужденных состояний молекул являются некоторые свободнорадикальные процессы, сопровождающие ферментативный гидролиз АТФ.

Московский государственный университет им. М. В. Ломоносова

Поступило 45 VI 1972

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ О. Р. Кольс, И. М. Лимаренко, Б. Н. Тарусов, ДАН, 167, № 4, 956 (1966). ² О. Р. Кольс, И. М. Лимаренко и др., ДАН, 172, № 5, 1200 (1967). ³ Ю. П. Козлов, О. Р. Кольс и др., Сборн. Физико-химические основы авторегуляции в клетках, М., 1968. ⁴ И. М. Лимаренко, С. П. Волкова и др., ДАН, 185, № 5, 1164 (1969). ⁵ Л. С. Skou, Biochim. et biophys. acta, 23, 394 (1957). ⁶ В. Б. Ритов, Биохимия, 36, № 2, 393 (1971). ⁷ К. Ваіlу, Віосhет. Л., 36, 121 (1942). ⁸ Г. А. Кочетов, Практическое руководство по энзимологии, М., 1971. ⁹ Г. К. Саев, Изв. Центр. лаб. биохим. АН Болгарии, 1962. ¹⁰ Ю. П. Козлов, Привитая сополимеризация, как метод исследования свободных радикалов в биологических системах, М., 1970.