УДК 513.88

MATEMATHKA

С. С. КУТАТЕЛАДЗЕ

НЕКОТОРЫЕ ТЕОРЕМЫ О СХОДИМОСТИ ОПЕРАТОРОВ

(Представлено академиком Л. В. Канторовичем 11 V 1972)

В работе изучаются некоторые вопросы сходимости последовательностей операторов и связанная с этим задача об однозначной определенности оператора в том или ином классе. Аналогичному вопросу о сходимости, как правило, положительных операторов к тождественному, посвящены работы, упомянутые в обзоре (¹), статьи (²-в), а также работы (9,10), являющиеся отправным пунктом дальнейшего изложения. Используемые ниже сведения из теории пространств Канторовича см. в (¹1).

Пусть X— упорядоченное векторное пространство, Y—K-пространство и $T \in \mathcal{L}^+(X,Y)$ (т. е. T— положительный линейный оператор, действующий из X в Y). Конус (= выпуклый конус) H в X называется с у п ремальным генератором пространства X относительно оператора T, если H минорирующий (т. е. для любого x из X множество $\{h \in H: h \leq x\}$ не пусто) и, кроме того,

$$Tx = \sup_{h \leqslant x, h \in H} Th.$$

Если $X \subset Y$ и T = E, где E — оператор тождественного вложения X в Y, то данное определение совпадает со стандартным определением супремального генератора относительно K-пространства; если Y есть K-пространство вещественных чисел R, то это определение переходит в определение генератора относительно функционала ($^{\circ}$).

В рассматриваемой ситуации справедлива следующая теорема (ср. (10)), которую следует считать специальным случаем теоремы Хана—

Банаха — Канторовича.

T е о р е м а $\ 1$. Π усть H — минорирующий конус в X. Следующие утверждения эквивалентны:

 $1)_{H}-супремальный генератор пространства <math>X$ относительно опера-

ropa T.

2) Для любой последовательности операторов (T_n) , $T_n \in \mathcal{L}^+(X, Y)$, такой, что $\lim_n T_n h \geqslant Th$ для всех h из H, следует, что $(o) - \lim_n T_n x = Tx$ для всех x из X.

3) $\operatorname{Spr}(T, H) = \{T' \in \mathcal{L}^+(X, Y) : T'h \ge Th(h \in H)\} = \{T\}.$

В случае телесности конуса положительных элементов в X условие

мипорантности H можно отбросить.

Рассмотрим, например, в качестве Y K-пространство H_G функций, гармонических и ограниченных в ограниченной области (числового пространства) G с компактной границей ∂G . В качестве X возьмем $C(\partial G)$, где C(Q) — пространство непрерывных на Q функций. Пусть $HC_{\overline{G}}$ — пространство функций, гармонических в G и непрерывных в $\overline{G} = G \cup \partial G$. Обозначим через HC_G пространство следов функций из $HC_{\overline{G}}$ на G, а через $H_{\partial G}$ — пространство следов на ∂G . Ясно, что HC_G и $H_{\partial G}$ естественным образом изоморфны и могут быть отождествлены. Пусть, далее, $T:C(dG) \to H_G$ — оператор, сопоставляющий каждой функции из $C(\partial G)$ соответствующее решение обобщенной задачи Дирихле. Тогда теорема Келдыша $(^{12})$ пере-

пишется в виде $\mathrm{Spr}(T,H_{\partial G})=\{T\}$. Отсюда, по теореме 1, получаем для $f\in \mathcal{C}(\partial G)$ представление

$$Tf = \sup \{ h \in HC_G : h(x) \leq f(x), x \in \partial G \}.$$

Очевидно, в свою очередь, что теорема Келдыша является простым

следствием указанного представления.

Теорему 1 можно применить для исследования операторов $T\colon V\to Y$ (V- нормированное пространство, Y-K-пространство), обладающих абстрактной пормой, т. е. таких, что множество $TS=\{|Tx|\colon \|x\|\leqslant 1\}$ ограничено (элемент sup TS называется абстрактной нормой оператора T и обозначается |T|). Переход к случаю положительных операторов происходит с помощью порядковой надстройки (см., например, $(^{13})$). Напомним, что порядковой надстройки (см., например, $(^{13})$). Напомним, что порядковой надстройно обращенное пространства V называют пространство $V\times R$, упорядоченное телесным конусом $\{(x,t)\in V\times R\colon \|x\|\leqslant t\}$ — надграфиком функционала $x\mapsto \|x\|$.

Tеорема 2. Пусть \hat{H} – конус в V и T – обладающий абстрактной

нормой оператор, $T: V \to Y$. Следующие утверждения эквивалентны:

1) Конус $\widetilde{H} = H \times (-R_+)$, где $R_- = \{t \in R: t \ge 0\}$, является супремальным генератором порядковой надстройки пространства V относительным оператора $(T, |T|): (x, t) \mapsto Tx + t|T|$.

2) Для каждого x из V имеет место представление

$$Tx = \sup_{h \in H} (Th - |T|||x - h||).$$

- 3) Для любой последовательности $(T_n), T_n: V \to Y$, такой, что $\overline{\lim}_n |T_n| \le$ $\le |T|$ и $\underline{\lim}_n T_n h \ge Th$ для всех h из H, выполняется $(o) \underline{\lim}_n T_n x = x$, $x \in V$.
- 4) Для любого оператора $T': V \to Y$ такого, что $|T'| \le |T|$ и, кроме того, $T'h \ge Th$, $(h \in H)$, следует, что T' = T.

В случае, когда Y = R, эта теорема переходит в аналог известного результата Шмульяна (14), см. также (15). Аналогичное утверждение справедливо также в случае, когда V нормируется при помощи произвольного K-динеала.

Особенный интерес представляют конечные генераторы, которые при естественных предположениях, как известно (10), существуют лишь в K-линеалах ограниченных элементов. В дальнейшем поэтому мы остановимся особо на случае, когда V является KN-линеалом ограниченных элементов. Прежде всего, для конуса H в V условимся через H обозначать коническую оболочку элемента (-1, -1), где 1 — единица в V, и конуса $\{(h, -h) \subseteq V \times V \colon h \subseteq H\}$ в пространстве $V \times V$.

Имеет место эффект «удвоения генератора», именно:

Теорема 3. Следующие утверждения эквивалентны:

- 1) \vec{H} является супремальным генератором порядковой надстройки пространства V относительно оператора (E, 1), где E вложение V в Y.
- 2) Н является супремальным генератором пространства $V \times Y$ относительно оператора $E: (x_1, x_2) \mapsto x_1$.
- 3) Для любой последовательности (T_n) , где T_n : $V \to Y$, $\overline{\lim}_n |T_n| \leqslant 1$ $u \underline{\lim}_n T_n h \geqslant h$ для $h \in H$, выполняется $(o) \lim T_n x = x$, $x \in V$.
- 4) Для любого оператора $T: V \to Y$ такого, что $|T| \le 1$ и, кроме того, $Th \ge h, h \in H$, выполняется T = E.

При применении этой теоремы следует иметь в виду, что подпространство H в V обладает тем свойством, что H— супремальный генератор относительно оператора E в том и только том случае, если H— супремальный генератор $V \times V$ относительно K-пространства $Y \times Y$.

Приведем типичное приложение описанного эффекта. Рассмотрим метрический компакт Q, снабженный положительной бэровской мерой. Через $S_{\mu}(Q)$ обозначим соответствующее пространство измеримых функций. Будем считать компакт Q реализованным в сопряженном пространстве C'(Q), т. е. отождествлять точку x из Q с мерой Дирака ε_x : $f \mapsto f(x)$. Положим $\hat{Q} = Q \cup (-Q)$ и определим на \hat{Q} меру $\hat{\mu}$, считая для бэровского множества e в \hat{O} , что

 $\hat{\mu(e)} = \mu(e \cap Q) + \mu(-(e \cap (-Q))).$

Если H — подпространство в C(Q), то через \hat{H} обозначим конус в $C(\hat{Q})$, патянутый на функцию — 1 и множество, состоящее из функций \hat{h} , где для h из H и x из Q считается

$$\hat{h}(\varepsilon_x) = h(x), \ \hat{h}(-\varepsilon_x) = -h(x)$$

(мы, разумеется, полагаем, что в \hat{Q} индуцирована широкая топология). Конкретизация теоремы 3 приводит к следующему результату.

Теорема 4. Следующие утверждения эквивалентны:

1) Мера $\hat{\mu}$ максимальна в упорядоченности Шоке, порожденной конусом $\hat{H}.$

2) Конус H является супремальным генератором пространства $C(Q) \times$

 $\times C(Q)$ относительно K-пространства $S_u(Q) \times S_u(Q)$.

3) Если последовательность (T_n) операторов из C(Q) в $S_\mu(Q)$ такова, что $|T_n| \mathbf{1} \le \mathbf{1}$ и для всякого h из H последовательность $(T_n h)$ сходится k h почти всюду (соответственно по мере), то для любой функции f из C(Q) последовательность $(T_n f)$ сходится k f почти всюду (соответственно по мере).

Представляет интерес заменить в приведенных теоремах абстрактную норму на «обыкновенную», ибо в последнем случае имеют место специфические явления. К сожалению, простые примеры показывают, что в теоремах 2-4 заменить абстрактную норму на обычную (даже когда Y есть KB-пространство с аддитивной нормой) нельзя. Отметим, однако, что при Y=B(Q), где B(Q) — пространство ограниченных на Q функций, $\|T\| \leqslant 1 \Leftrightarrow \|T\| \leqslant 1$. При этом, если Q — компакт, то в теореме 3 можно говорить о равномерной сходимости. В частности, при V=C(Q) получающийся результат содержит соответствующий факт о нерастягивающих операторах из $\binom{8}{2}$.

Заменить абстрактную норму на обычную в некотором смысле можно также для компактных операторов со значениями в пространстве непрерывных на компакте Q функций. При этом рабочим аппаратом служит теорема Майкла (16).

Теорема 5. Пусть V — нормированное пространство, T — компактный оператор, $T\colon V\to C(Q)$ и H — конус в V, а ε — положительное число.

Имеют место импликации $(1) \Leftrightarrow (2) \Rightarrow (3) u (4) \Rightarrow (1)$, где:

1) Конус \widetilde{H} является супремальным генератором порядковой надстройки пространства V относительно функционала $(T_x, \|T\|), T_x: v \mapsto (Tv)(x), \partial \Lambda \mathfrak{g}$ любого x из Q.

2) And nodoro one paropa $T': V \to B(Q)$ takoro, uto $||T'|| \le ||T|| u$, kpo-

ме того, $T'h \geqslant Th$, $h \in H$, следует, что T' = T.

3) Для любой последовательности (T_n) операторов T_n : $V \to C(Q)$ таких, что $\lim_n \|T_n\| \le \|T\|$ и равномерный $\lim_n T_n h \ge Th$ для всех h из H, следует, что (T_n) сходится в сильной операторной топологии κ T.

4) Для любого компактного оператора $T'\colon V\to C(Q)$ такого, что $\|T'\|\leqslant$

 $\leq (1+\varepsilon) ||T|| u T'h \geqslant Th, h \in H, cne \partial yer, uto T' = T.$

Институт математики Сибирского отделения Академии паук СССР Новосибирск

Поступило 1 XII 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Л. А. Гаркави, В сборн. Математический анализ, 1967. Итоги науки, М., 1969, стр. 75. ² Р. К. Васильев, Сборн. пер. Математика, 6, 35 (1970). ³ Р. К. Васильев, Матем заметки, 8, 475 (1970). ⁴ М. А. Красносельский, Е. А. Лиф шин, УМН, 23, 213 (1968). ⁵ М. А. Кгаsnosel'skii, Е. А. Lifsic, Studia math., 31, 5, 455 (1968). ⁶ Л. Г. Лабскер, ДАН, 197, № 6, 1264 (1971). ⁷ Р. М. Минькова, Ю. А. Шашкин, Матем заметки, 6, 5, 591 (1969). ⁸ Ю. А. Шашкин, Матем заметки, 6, 5, 591 (1969). ⁸ Ю. А. Шашкин, Матем заметки, 6, 5, 591 (1969). ⁸ Ю. А. Шашкин, Мубинов, ДАН, 199, № 4, 776 (1971). ¹⁰ С. С. Кутателадзе, А. М. Рубинов, Оптимизация, 3, 20, 120 (1971). ¹¹ Л. В. Капторович, Б. З. Вулих, А. Г. Пипскер, Функциональный анализ в полуупорядоченных пространствах, М.— Л., 1950. ¹² Н. С. Лапдкоф, Основы современной теории потенциала, «Наука», 1966. ¹³ С. Ја mеson, Ordered Linear Spaces, N. Y., 1970. ¹⁴ В. Л. Шмульяп, ДАН, 27, 7, 643 (1940). ¹⁵ К. Fan, I. Glicksberg, Duke Math. J., 25, 4, 553 (1958). ¹⁶ Е. Місhael, Ann. Math., 63, 2, 361 (1956).