УЛК 541.532.7

ФИЗИЧЕСКАЯ ХИМИЯ

Г. А. МАРТЫНОВ, В. М. МУЛЛЕР

УРАВНЕНИЯ КИНЕТИКИ КОАГУЛЯЦИП С УЧЕТОМ РАСПАДА ОБРАЗУЮЩИХСЯ АГРЕГАТОВ

(Представлено академиком П. А. Ребиндером 10 IV 1972)

1. Нами было качественно установлено (1), что процессы распада агрегатов играют очень важную роль в механизме агрегативной устойчивости. В настоящей статье мы попытаемся дать количественный анализ проблемы устойчивости с учетом распадов. Для этого рассмотрим пространственно однородную дисперсную систему, содержащую n_k агрегатов сорта k в единице объема (индекс 1, 2, ∞ указывает на число «элементарных» частиц в агрегате). Если предположить, что все агрегаты движутся хаотически и что n_k не очень велики, то число слипаний агрегатов сорта i и j в один агрегат сорта i+j можно записать в виде $a_{ij}n_in_j$, а число распадов агрегата i+j на «осколки» i и j-в виде $b_{ij}n_{i+j}$ (здесь a_{ij} и b_{ij} — коэффициенты агрегации и распада, симметричные относительно перестановки индексов i и j).

Соответственно элементарный поток (в пространстве размеров агрегатов) из состояний i и j в состояние i+j будет равен (1)

$$\psi_{ij} = a_{ii}n_in_i - b_{ii}n_{i+j}. \tag{1}$$

Зная фі, можно записать уравнения баланса числа агрегатов в виде

$$\dot{n}_k(t) = \Psi_{\rightarrow k}(t) - \Psi_{k\rightarrow}(t), \quad k = 1, 2, \dots, \infty, \tag{2}$$

где $\dot{n}_{\scriptscriptstyle k} = dn_{\scriptscriptstyle k} \, / \, dt, \, t$ — время и

$$\Psi_{\to k} = \frac{1}{2} \sum_{i=1}^{k-1} \psi_{i, k-i}(t)$$
 (3)

— полный поток в состояние k из всех возможных состояний с i < k, а

$$\Psi_{k\to} = \sum_{i=1}^{\infty} \psi_{k,i}(t) \tag{4}$$

— полный поток из состояния k во все высшие состояния с $i \geq k$.

Уравнения (2) построены таким образом, что полное число «элементарных» частиц в единице объема постоянию, т. е.

$$n_0(t) = \sum_{k=1}^{\infty} k n_k(t) = \text{const.}$$
 (5)

Суммируя (2) по всем k, получим

$$\dot{n}(t) = -\frac{1}{2} \sum_{i,j=1}^{\infty} \psi_{ij}(t),$$
(6)

где $n(t) = \sum_{k=1}^{\infty} n_k(t)$ — полное число агрегатов в единице объема.

Предположение об автономности агрегатов, позволяющее записать вероятность их распада в виде $b_{ij}n_{i+j}$, и предположение о хаотичности движения агрегатов как целого, благодаря которому вероятность их столкновения равна $a_{ij}n_{i}n_{j}$, справедливы для ансамбля частиц любой формы и структуры. Поэтому с помощью (1)-(6) можно описывать процессы образования новой фазы как в молекулярно-дисперсных (газы, растворы), так и в коллондно-дисперсных (золи, эмульсии, суспензии) системах *. В частности, при $a_{ij}n_{i}n_{j}\gg b_{ij}n_{i+j}$ уравнения (2) переходят в уравнения кинетики коагуляции Смолуховского (2), а в случае $\psi_{i,j-i}=0$ при $2\leqslant i\leqslant j-2$ и $\psi_{i,j-i}\neq 0$ при i=1,j-1-8 уравнения кинетики конденсации Френкеля (i) — Зельдовича (i).

Естественным обобщением (2) на случай пространственно-неоднородных систем, находящихся в гравитационном поле, является (5)

$$\dot{n}_{k}(z,t) = \frac{\partial}{\partial z} D_{k} \left\{ \frac{\partial n_{k}(z,t)}{\partial z} + \frac{kv_{1}(\rho - \rho_{l})g}{\theta} n_{k}(z,t) \right\} + \Psi_{\rightarrow k}(z,t) - \Psi_{k\rightarrow}(z,t),$$
(7)

где ось z совпадает с направлением гравитационного поля, D_k — коэффициент диффузии агрегата сорта k, v_1 — объем одиночной частицы, $\rho - \rho_l$ — разность плотностей диспергированного вещества и дисперсионной среды, g — ускорение силы тяжести.

2. Уравнения (1)-(4) могут иметь равновесные решения $n_k(t) = v_k =$ = const, устойчивые по отношению к любым флуктуациям, которым соответствует минимум свободной энергии F системы. Для доказательства этого утверждения определим химический потенциал агрегата как целого в виде $\binom{6}{}$

$$\mu_k = \frac{1}{V} \left(\frac{\partial F}{\partial n_k} \right)_{n_k \to n} \theta_{k,V} = \mu_k^{(0)} + \theta \ln \frac{n_k}{N_0}, \tag{8}$$

где $\mu_{k}^{(0)}$ — составляющая μ_{k} , описывающая внутренние степени свободы агрегата и его взаимодействие с другими агрегатами, $\theta=kT$ — температура, V— объем системы и $N_{0}=n_{0}+N_{p}$ — полное число «частиц» в единице объема, включая и число молекул дисперсионной среды N_{p} (обычно $N_{p}\gg n_{0}$ и $N_{0}\simeq N_{p}=$ const). Второе слагаемое в (8) определяет энтропию смешения.

Из (5) и (8) следует, что в состоянии равновесия, когда $n_{\scriptscriptstyle k}=v_{\scriptscriptstyle k}(\theta,\,n_{\scriptscriptstyle 0})$ и $F=\widetilde{F}(\theta,\,n_{\scriptscriptstyle 0})$ **

$$\mu_{k} = \widetilde{\mu}_{k} = \frac{1}{V} \left(\frac{\partial F}{\partial v_{k}} \right)_{v_{i \to k}, \theta, V} = \frac{1}{V} \left(\frac{\partial \widetilde{F}}{\partial n_{0}} \right)_{\theta, V} \left(\frac{\partial n_{0}}{\partial v_{k}} \right)_{v_{i \to k}} = k \mu^{(v)}, \tag{9}$$

где химический потенциал «пара» $\mu^{(v)}=\mu_1=(\partial F/\partial n_0)_{\theta,\ V}.$ Отсюда

$$\tilde{\mu}_i + \tilde{\mu}_{k-i} = \tilde{\mu}_k. \tag{10}$$

Найдем производную

$$\left(\frac{dF}{dt}\right)_{\theta, V, n_0} = \sum_{i=1}^{\infty} \frac{1}{V} \left(\frac{\partial F}{\partial n_i}\right)_{\theta, V} \dot{n}_i(t) = \sum_{i=1}^{\infty} \mu_i \dot{n}_i(t), \tag{11}$$

где \dot{n}_i определены (2).

Поскольку
$$\sum_{i=1}^{\infty} \mu_i \sum_{j=1}^{i-1} \psi_{j,\ i-j} = \sum_{i,\ j=1}^{\infty} \mu_{i+j} \psi_{ij}$$
, то

$$\left(\frac{dF}{dt}\right)_{\theta, V, n_0} = -\frac{1}{2} \sum_{i, j=1}^{\infty} b_{ij} n_{i+j} \left(\mu_i + \mu_j - \mu_{i+j}\right) \left(\frac{a_{ij}}{b_{ij}} \frac{n_i n_j}{n_{i+j}} - 1\right). \tag{12}$$

** В неравновесных системах θ и n_0 не определяют однозначно n_k и F.

^{*} В зависимости от типа системы меняется только вид коэффициентов a_{ij} и b_{ij} и способ их расчета, но не сами уравнения (1)—(6).

Согласно принципу детального равновесия, в состоянии термодинамического равновесия все потоки $\psi_{ij} = 0$. С учетом (8), (10) и (1) это дает

$$K_{ij} = \frac{\tilde{a}_{ij}}{\tilde{b}_{ij}} = \frac{\tilde{v}_{i+j}}{\tilde{v}_i \tilde{v}_j} = \frac{1}{N_0} \exp\left[\frac{1}{\theta} \left(\widetilde{\mu}_i^{(0)} + \widetilde{\mu}_j^{(0)} - \widetilde{\mu}_{i+j}^{(0)}\right)\right], \tag{13}$$

где K_{ij} — константы равновесия реакций (i)+(j) \rightleftharpoons (i+j), a_{ij} и b_{ij} — равновесные значения a_{ij} и b_{ij} . Поскольку a_{ij} и b_{ij} — функции только макросконических переменных θ , n_0 и т. д., которые в рассматриваемых процессах поддерживаются постоянными, то $\tilde{a}_{ij}=a_{ij}$, $\tilde{b}_{ij}=b_{ij}$. Подставляя (13) в (12)

и замечая, что n_i / $\mathbf{v}_i = \exp[\ rac{1}{ heta} \ (\mathbf{\mu}_i - \widetilde{\mathbf{\mu}}_i) \]$, получим

$$\left(\frac{dF}{dt}\right)_{0, V, n_{0}} = -\frac{1}{2} \sum_{i, j=1}^{\infty} b_{ij} n_{i+j} \left(\mu_{i} + \mu_{j} - \mu_{i+j}\right) \times \left\{ \exp\left[\frac{1}{\theta} \left(\mu_{i} + \mu_{j} - \mu_{i+j}\right)\right] - 1 \right\} \leqslant 0.$$
(14)

Таким образом, при любом отклонении μ_i от $\tilde{\mu}_i$ (или, что то же, n_i от v_i) значение F возрастает. Если затем систему предоставить самой себе, то F начнет самопроизвольно уменьшаться и в конце концов достигнет минимума, при котором dF/dt=0.

3. Полагая в K_{ij} индекс i=1, получим в результате последовательного применения формул (13) известное выражение Френкеля (3)

$$\mathbf{v}_{k} = N_{0} \left(\frac{\mathbf{v}_{1}}{N_{0}} \right)^{k} \exp \left\{ -\frac{1}{\theta} \left(\mathbf{\mu}_{k}^{(0)} - k \widetilde{\mathbf{\mu}}_{1}^{(0)} \right) \right\} = N_{0} \exp \left\{ -\frac{1}{\theta} \left(\mathbf{\mu}_{k}^{(0)} - \widetilde{\mathbf{\mu}}_{1} \right) \right\}.$$
 (15)

Входящие сюда величины $\tilde{\mu}_k^{(0)}$ и v_k могут быть рассчитаны с помощью статистических формул Хилла (7), справедливость которых в данном случае обусловлена следующим.

В теории растворов Мак-Миллана — Майера (⁷) показано, что поведение растворенного вещества может описываться обычной статистической суммой, в которой, однако, истинная энергия взаимодействия между молекулами растворенного вещества заменена некоторой эффективной энергией взаимодействия, учитывающей наличие растворителя (так называемый потенциал средней силы). Указанное соответствие может быть распространено и на золи (⁶), так как в статистике Гиббса совершенно несущественна природа «элементарных» частиц — это могут быть и атомы, и молекулы, и ассоциаты молекул.

Хотя по известной энергии взаимодействия двух частиц $u_{ij}(r_{ij})$ с помощью формул Хилла можно в принципе найти все v_k , практически удается довести вычисления до конца только для k=2. Для больших номеров kможно воспользоваться «сверхмакроскопическим» подходом, опять-таки основанном на теории Мак-Миллана — Майера (точнее, на некотором ее обобщении). Если рассматривать отдельные частицы как своего рода «сверхмолекулы», то крупные агрегаты надо трактовать как «сверхкапли», образованные такими «сверхмолекулами». По апалогии с обычными каплями, для них можно ввести понятие избыточного поверхностного натяжения σ и избыточной поверхностной энергии $w \simeq \sigma$ (не смешивать с соответствующими понятиями, характеризующими границу раздела диспергированное вещество — дисперсионная среда!). Если обозначить через и энергию парного взаимодействия частиц в агрегате, z и z' – число ближайших соседей для частиц, находящихся соответственно внутри и на поверхности агрегата, и через l — число частиц, приходящихся на единицу поверхности агрегата, то, согласно (3), $\sigma \simeq w \simeq 1/2 u \, (z-z') l$. Оценка величины σ по этой формуле показывает, что для золей $\sigma \leq 0.01 - 1.0$ эрг/см², что мпого меньше поверхпостного натяжения обычных жидкостей и кристаллов. Малостью о и объясняется рыхлость осадков, получающихся после коагуляции золей.

Благодаря наличию поверхностного натяжения в среднем все крупные агрегаты должны иметь сферическую форму *. Поэтому для них можно положить $\tilde{\mu}_{k}^{(0)} = k\tilde{\mu}^{(l)} + \alpha k^{2/3}$, где $\alpha = 4\pi\sigma (3v_1/4\pi)^{2/3}$. Подстановка этого выражения в (15) дает

$$v_k = N_0 \exp\left\{-\frac{1}{\theta} \left(\Delta \mu + \alpha k^2 \right)\right\},\tag{16}$$

где $\Delta \mu = \tilde{\mu}^{(i)} - \mu^{(v)}$ — разность химических потенциалов частиц в агрегате и в растворе. Так как ν_k должны удовлетворять условию сохранения числа частиц (5), то из (16) следует, что уравнения (2) имеют равновесные решения только при $\Delta \mu > 0$; при $\Delta \mu < 0$ золь всегда неустойчив. Очевидно, что условие

 $\tilde{\mathbf{g}}^{(l)}(\theta, n_0) = \tilde{\mathbf{g}}^{(v)}(\theta, n_0) \tag{17}$

определяет собой кривую $n_0 = n_0(\theta)$ фазового перехода первого рода, по одну сторону которой золь может находиться в термодинамически равновесном (по отношению к процессам агрегирования) состоянии, а по другую — он всегда неравновесен.

4. Только при $\mu^{(l)} > \mu^{(e)}$ минимуму свободной энергии F соответствует однофазное состояние; при $\mu^{(l)} < \mu^{(v)}$ равновесным является двухфазное состояние, при котором часть агрегатов выпадает в осадок, образуя коагулят («конденсированная фаза»), а остальные частицы по-прежнему образуют золь («газообразная фаза»). Так как двухфазное состояние является пространственно неоднородным, то с помощью уравнений (2) нельзя проследить за всеми этапами перехода из пересыщенного состояния в состояние термодинамического равновесия; эти уравнения описывают только начальную стадию эволюции системы, в течение которой она продолжает оставаться однородной. Последним и объясняется, что при $\mu^{(l)} < \mu^{(v)}$ уравнения (2) не пмеют равновесных решений **.

Напротив, уравнения (7), которые учитывают, что под действием силы тяжести «избыток» диспергированного вещества удаляется из системы, позволяют проследить за всеми стадиями эволюции золя, вплоть до установления в нем термодинамического равновесия, при котором

$$\mathbf{v}_{k}(z) = \mathbf{v}_{k} \exp\left\{-\frac{k \mathbf{v}_{1} (\rho - \rho_{l}) g}{\theta} z\right\},\tag{18}$$

где v_k — равновесные концентрации «насыщенного» золя на границе z=0 его с коагулятом (т. е. с «конденсированной» фазой). Легко показать, что (18) являются решением (7) при $n_k=0$ и что это решение не нарушает принципа детального равновесия (т. е. условия $\psi_{ij}(z)=0$).

Авторы выражают признательность чл.-корр. АН СССР Б. В. Дерягину за ценные советы, сделанные при обсуждении статьи.

Институт физической химии Академии наук СССР Москва Поступило 6 V 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Г. А. Мартынов, В. М. Муллер, ДАН, **207**, № 2 (1972). ² Г. Р. Кройт, Наука о коллоидах, ИЛ, 1955. ³ Я. И. Френкель, Кинетическая теория жидкости, Изд. АН СССР, 1945. ⁴ Я. Б. Зельдович, ЖЭТФ, 12, 525 (1942). ⁵ Г. А. Мартынов, А. М. Муллер, Сборн. Поверхностные силы в тонких илисперсных системах, «Наука», 1972. ⁶ А. И. Русанов, Е. Д. Щукин, П. А. Ребиндер, Колл. журн., **30**, 573 (1968). ⁷ Т. Хилл, Статистическая механика, ИЛ, 1960.

^{*} Форма каждого конкретного агрегата в результате флуктуаций может очень сильно отличаться от сферы, что обусловлено малостью поверхностного натяжения.
** При $\mu^{(t)} < \mu^{(v)}$ производная $(dF/dt)_{\theta, n_0, v}$ но-прежнему отрицательна, но процесс достижения равновесия, при котором $(dF/dt)_{\theta, n_0, v} = 0$, с помощью (2) проследить невозможно.