УДК 518.61

MATEMATIIKA

А. В. СОКОЛОВ

О СОВПАДЕНИИ СПЕКТРА СЕМЕЙСТВА РАЗНОСТНЫХ ОПЕРАТОРОВ С ЯДРОМ ЭТОГО СПЕКТРА ДЛЯ ОДНОГО КЛАССА ОПЕРАТОРОВ

(Представлено академиком С. Л. Соболевым 19 IV 1972)

В связи с исследованием устойчивости несамосопряженных разностных краевых задач в $(^1, ^2)$ введено понятие спектра семейства $\{R_N\}$ линейных операторов R_N , $N=N_1$, N_1+1,\ldots , действующих в (N+1)-мерных нормированных пространствах U_N . Там же указан алгоритм вычисления спектра семейства операторов на отрезке в равномерной метрике. В $(^3)$ показано, что спектр семейства $\{R_N\}$ зависит, вообще говоря, от выбора норм $\|u\|_{U_N}$ и введено понятие ядра спектра, инвариантного относительно выбора норм из широкого класса так называемых разностных норм. Однако способ вычисления ядра оставался непзвестным. В предлагаемой заметке показано, что для семейств операторов, возникающих из произвольных явных разностных схем с постоянными коэффициентами на отрезке, ядро спектра совпадает со всем спектром, вычисленным в случае равномерной нормы. Отсюда вытекает способ вычисления инвариантного ядра, а также то, что спектр семейства операторов, вычисленный в равномерной метрике, содержится в спектре, вычисленном при любом другом выборе норм из числа разностных норм в пространствах U_N .

Определение 1 (2). Точка λ называется точкой резольвентного множества семейства операторов $\{R_N\}$, если существуют $\varepsilon > 0$ и N_0 такие, что при $N > N_0$ для любого $u \in U_N$ выполнено перавенство $\|R_N u - \lambda u\| > \varepsilon \|u\|$. Точками спектра называются те точки λ , которые не являются резольвентными.

Определение 2 (3). Арифметическим ядром спектра семейства операторов $\{R_N\}$ называется множество

$$\Lambda' = \bigcap_{k=1}^{\infty} \bigcap_{N_0=N_1}^{\infty} \bigcup_{N=N_0}^{\infty} \Lambda_{k,N}$$
,

где $\Lambda_{h,N}$ — множество всех комплексных чисел λ , для которых существует решение $u \in U_N$ неравенства

$$||R_N u - \lambda u|| < \frac{1}{N^k} ||u||.$$
 (1)

Теорема. Пусть $\{R_{\scriptscriptstyle N}\}$ — семейство разностных операторов $R_{\scriptscriptstyle N},\ v=R_{\scriptscriptstyle N}u,\ u,\ v\in U_{\scriptscriptstyle N},\ \|u\|=\max_{0\leqslant n\leqslant N}|u_n|,\ заданных формулами:$

$$v_n = \sum_{k=-r}^{s} a_k u_{k+n}, \quad n = r, ..., N - s,$$

 $z\partial e\ r,s\geqslant 0\ u\ ecnu\ r\neq 0$, то $a_{-r}\neq 0$; ecnu $s\neq 0$, то $a_s\neq 0$;

$$v_n = \sum_{k=0}^{k_1} b_{n,k}, u_k, \quad n = 0, \dots, r-1$$

(условие на левой границе);

$$v_n = \sum_{k=0}^{k_2} c_{n-N+s, k} u_{N-k_2+k}, \quad n = N-s+1, \ldots, N$$

(условие на правой границе).

Тогда спектр Λ семейства $\{R_{\scriptscriptstyle N}\}$ разностных операторов совпадает с арифметическим ядром Λ' этого спектра.

Известно (1), что спектр семейства операторов в нашем случае может быть найден с помощью процедуры исследования устойчивости, указанной К. И. Бабенко и И. М. Гельфандом. А именно, спектр состоит из точек ли-

нии Γ , которую пробегают точки λ , $\lambda = \sum_{k=-r}^{r} a_k q^k$, когда комилексная пере-

менная q пробегает единичную окружность, из копечной совокупности изолированных точек и из двумерных образований («пленок»), заполняющих некоторые из односвязных областей, ограниченных отрезками линии $\Gamma.$

Главную трудность представляет доказательство принадлежности ядру Λ' тех точек $\lambda \in \Gamma$, в достаточно малой окрестности $O\lambda$ которых нет точек $\lambda
ot \in \Gamma$, принадлежащих спектру $\Lambda . \,\, \mathrm{B}$ данной теореме доказывается, что для каждой из таких точек $\lambda \in \Gamma$, за исключением, быть может, конечного числа их, существует сколь угодно малая окрестность $O\lambda$, удовлетворяющая следующим свойствам (такие точки х будем называть регулярными):

- 1) в пределах Ох существуют обратные однозначные аналитические функции $q_i(\lambda)$, $i=1,\ldots,m$, m=r+s, такие, что $q_i'(\lambda)\neq 0$ при $\lambda \in O\lambda$;
- линия Г разделяет Ох на две связные непересекающиеся области A II B:
- 3) существует натуральное число р такое, что при соответствующем выборе ветвей $q_i(\lambda)$ и соответствующей их нумерации будет:
 - a) $|q_i(\lambda)| \leq r_1 < 1$, $\lambda \in O\lambda$, $i = 1, \ldots, r p$;
 - b) $|q_i(\lambda)| < 1$ при $\lambda \in A$, $|q_i(\lambda)| = 1$ при $\lambda \in \Gamma \cap O\lambda$,
 - b) $|q_i(\lambda)| \leq 1$ upin $\lambda \in A$, $|q_i(\lambda)| = 1$ upin $\lambda \in I \cap O\lambda$, $|q_i(\lambda)| \geq 1$ upin $\lambda \in B$, $i = r p + 1, \dots, r$; c) $|q_i(\lambda)| \geq 1$ upin $\lambda \in A$, $|q_i(\lambda)| = 1$ upin $\lambda \in \Gamma \cap O\lambda$, $|q_i(\lambda)| \leq 1$ upin $\lambda \in B$, $i = r + 1, \dots, r + p$; d) $|q_i(\lambda)| \geq r_2 \geq 1$, $\lambda \in O\lambda$, $i = r + p + 1, \dots, m$.

В дальнейшем мы будем пользоваться этой нумерацией ветвей $q_i(\lambda)$. Идея доказательства неравенства (1) для регулярных точек λ_0 состоит в следующем. Ищется решение $u(\lambda)$ этого неравенства в окрестности $O\lambda_0$ точки λ_0 в виде

$$u_n(\lambda) = \sum_{k=1}^{r-p} \alpha_k q_k^n(\lambda) + \sum_{k=r-p+1}^{r+p} \alpha_k q_k^n(\lambda) + \sum_{k=r+p+1}^{m} \alpha_k q_k^n(\lambda), \tag{2}$$

 $n=0,\ldots,N$, где a_k — произвольные коэффициенты, хотя бы один из которых отличен от нуля.

Для $n=r,\ldots,N-s$ u_n из (2) есть точное решение уравнения $(R_N u - \lambda u)_n = 0$. Для значений на левом конце отрезка $(n=0,\ldots,r-1)$ третье слагаемое из (2) экспоненциально убывает с ростом N. Теперь постараемся за счет выбора значений $a_k, k = 1, \ldots, r + p$, сделать сумму первых двух слагаемых из (2) на левом конце либо равной нулю, либо по крайней мере тоже экспоненциально убывающей с ростом N. За счет того, что неизвестных $lpha_k$ больше (их r+p штук), чем получающихся для их нахождения уравнений (их r штук), мы почти для каждого $\lambda \in O\lambda_0$ можем этого добиться и получить, таким образом, набор значений $a_k^{(1)}(\lambda)$, $k=1,\ldots,r+p$. Итак, на левом конце мы можем добиться выполнения перавенства (1) почти для всех $\lambda \in O\lambda_0$.

Поступим аналогичным образом с правым концом отрезка. Здесь у нас

первое слагаемое из (2) экспоненциально убывает, а для $a_k,\ k=r-p+1$ $+1,\ldots,m$, находим значения $a_k^{(2)}(\lambda)$.

Теперь мы должны добиться согласования найденных порознь коэффициентов $\alpha_k^{(1)}$ и $\alpha_k^{(2)}$ для $k=r-p+1,\ldots,r+p$, т. е. найти такое $\lambda_N \in O\lambda_0$, чтобы было $\alpha_k^{(1)}=\alpha_k^{(2)}, \ k=r-p+1,\ldots,r+p$.

Центральную роль в доказательстве существования такого λ_N играет Π емма. Π усть λ_0 — регулярная точка, $O\lambda_0$ — ее произвольная окрестность, в которой существуют и отличны от нуля $q_i(\lambda)$ и $q_i'(\lambda)$, $i=1,\ldots,m$. $\Pi y c \tau b$, далее,

$$f(\lambda) = \prod_{i=1}^{p} \frac{q_{r-p+i}(\lambda)}{q_{r+i}(\lambda)}, \quad f_{k,\binom{i_{1}, i_{2}, \dots, i_{k}}{j_{1}, j_{2}, \dots, j_{k}}}(\lambda) = \prod_{n=1}^{k} \frac{q_{r-p+i_{n}}(\lambda)}{q_{r+j_{n}}(\lambda)},$$

$$e \partial e \ k < p, \ 0 < i_{1} < i_{2} < \dots < i_{k} \leqslant p, \ 0 < j_{1} < j_{2} < \dots < j_{k} \leqslant p,$$

$$\Phi_{N}(\lambda) = \sum_{k=0}^{p-1} \sum_{\substack{i_{1},\ldots,i_{k}\\j_{1},\ldots,j_{k}}} C_{k,\binom{i_{1},\ldots,i_{k}}{j_{1},\ldots,j_{k}}}(\lambda) f_{k,\binom{i_{1},\ldots,i_{k}}{j_{1},\ldots,j_{k}}}^{N}(\lambda),$$

$$\partial C_{k,\binom{i_{1},\ldots,i_{k}}{j_{1},\ldots,j_{k}}}(\lambda) - \operatorname{kosphuluehth}, \text{ henperbishe no } \lambda \text{ } u \text{ he sasuchulue}$$

от N, а суммирование во внутренней сумме ведется по всевозможным таблицам описанного типа.

Tогда для достаточно больших N уравнение

$$f^{N}(\lambda) \stackrel{\partial}{=} \Phi_{N}(\lambda) \tag{3}$$

имеет в окрестности $O\lambda_0$ решение λ_N с невязкой порядка $\rho^{(N)^{V_16}}$, где 0< < ρ < 1, τ . е. существуют такие ρ и N_0 , что для любого $N>N_0$ существует $\lambda_N \subseteq O\lambda_0$, uto

$$|f^{N}(\lambda_{N}) - \Phi_{N}(\lambda_{N})| < \rho^{(N)^{1/16}}. \tag{4}$$

Доказательство этой леммы основывается на известной теореме о неподвижной точке при непрерывном отображении односвязного компакта в себя. Воспользоваться этой теоремой для доказательства существования точного решения уравнения (3) не удается. Поэтому мы вводим в уравнение (3) дополнительное экспоненциально убывающее с ростом N слагаемое и переходим к новому уравнению

$$\Psi_N(\lambda) \equiv (f^{(N)^{1/2}}(\lambda) - z_N^{(N)^{1/2}})^{(N)^{1/2}} = \Phi_N(\lambda), \tag{5}$$

где $z_{\scriptscriptstyle N}$ — некоторое комплексное число, зависящее от N, но не зависящее от λ . Число z_N подбирается таким образом, чтобы из существования решения уравнения (5) вытекало существование решения неравенства (4).

Для каждого N строятся криволинейные четырехугольники $W_N \ni \lambda_0$, стягивающиеся к λ_0 при $N \to \infty$. Границы W_N специально подбираются таким образом, чтобы функция $\Psi_{\scriptscriptstyle N}(\hat{\lambda})$ осуществляла гомеоморфное отображепие W_N на некоторую односвязную замкнутую область F_N римановой поверхности, а функция Φ_N — непрерывное отображение W_N внутрь F_N . При доказательстве включения $F_N = \Psi_N(W_N) \supset \Phi_N(W_N)$ мы исполь-

зуем, в частности, следующее свойство линии Γ и корней $q_i(\lambda)$, доказанное в работе. Пусть переменная q пробегает единичную окружность. Тогда для регулярной точки λ_0 существует натуральное p и такой отрезок $\eta \ni \lambda_0$ линии Γ , который значения функции $\lambda(q)$ пробегают p раз в одном направлении и р раз в противоположном, причем прохождение отрезка п в одном из направлений отвечает ветвям $q_i(\lambda)$ для $i=r-p+1,\ldots,r$, а в противоположном направлении — ветвям $q_i(\lambda)$ для $i = r + 1, \ldots, r - p$.

Институт электронных управляющих машии

Поступило **17 H 197**2

ЦИТИРОВАННАЯ ЛИТЕРАТУРА ¹ С. К. Годунов, В. С. Рябенький, Введение в теорию разностных схем, М., 1962. ² С. К. Годунов, В. С. Рябенький, УМН, 18, 3, 3 (1963). ³ В. С. Рябенький, ДАН, 185, № 2, 275 (1969).