УДК 534.26 ФИЗИКА

Е. А. КРАСИЛЬЩИКОВА

АКУСТИЧЕСКОЕ ПОЛЕ В ГАЗЕ ОТ ПРОИЗВОЛЬНЫХ ВОЗМУЩЕНИЙ НА ПЛАСТИНКЕ

(Представлено академиком Л. И. Седовым 29 IV 1972)

1. Рассмотрим неподвижную пластинку ширины d в пеограниченной идеальной сжимаемой среде. Начиная с некоторого момента времени t_0 , по поверхности пластинки распространяется фронт малых возмущений. Бегущая волна деформирует поверхность пластинки, приводя точки поверхности в малые движения. Нормальная составляющая скорости точек поверхности пластинки задана соответственно на верхней и нижней стороне пластинки: $v_n = A_{\rm B}$ и $v_n = A_{\rm B}$,

пластинки: $v_n = A_B$ и $v_n = A_B$, где A_B и A_B — функции времени и точек поверхности пластинки — являются малыми величи- в нами.

Будем исследовать плоскопараллельные безвихревые течения газа (¹, ²). Возьмем систему осей координат *Oxz*, как указано на рис. 1.

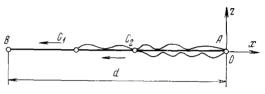


Рис. 1

Предположим, что фронт малых возмущений на верхней стороне поверхности пластинки (точка C_1) движется по закону

$$x = f_1(t) \tag{1}$$

и на нижней стороне (точка C_2) — по закону

$$x = f_2(t), (2)$$

где f_1 и f_2 — произвольные непрерывные функции времени, причем $|f_1'| > c$, $|f_2'| > c$, где c — скорость звука в невозмущенной среде. Пусть для определенности $|f_1'| \ge |f_2'|$.

Рассмотрим задачу об определении поля скоростей в линейно-акустическом приближении. Потенциал скорости будем искать в виде $\varphi = \varphi_1 + \varphi_2$. Функция φ_1 и φ_2 удовлетворяют волновому уравнению, условиям: $\varphi_1(x,-z,t) = -\varphi_1(x,z,t), \, \varphi_2(x,-z,t) = \varphi_2(x,z,t)$ и граничным условиям на оси Ox. Для интервала времени $t_0 < t < f_2^0(-d)$ (f_2^0 – обращение f_2) производные

$$\phi_{1z} = 0, \quad \phi_{2z} = 0 \text{ при } -d \leq x < f_1(t),$$

$$\phi_{1z} = \frac{1}{2} A_B(x, t), \quad \phi_{2z} = \frac{1}{2} A_B(x, t) \text{ при } f_1(t) \leq x < f_2(t),$$

$$\varphi_{1z} = {}^{1}/{}_{2}[A_{B}(x, t) + A_{H}(x, t)], \ \varphi_{2z} = {}^{1}/{}_{2}[A_{B}(x, t) - A_{H}(x, t)] \text{ при } f_{2}(t) \leq x \leq 0.$$
(4)

Для моментов времени $t \geqslant f_2{}^0(-d)$ всюду на отрезке \overline{AB} ($-d \leqslant x \leqslant \leqslant 0$) выполняется условие (4). На оси Ox вне отрезка \overline{AB} в любой момент времени выполняются условия

$$\varphi_1 = 0, \tag{5}$$

$$\varphi_{2z} = 0. (6)$$

1055

(3)

Основные задачи в общем случае движущейся пластинки в несжимаемой жидкости поставлены и решены Л. И. Седовым (², ³); задачи с учетом сжимаемости среды, когда пластинка совершает установившиеся колебания, решены М. Д. Хаскиндом (⁴, ⁵).

2. Введем пространство xzt (*). В плоскости xt определим области Σ и Σ' , в которых соответственно заданы условия (3) и (4). Также определим области Σ_1 и Σ_1' , в каждой из которых заданы условия (5) и (6). Область Σ ограничена отрезком прямой L_2 и кривыми L_3 , L_4 (рис. 2). Прямая L_2 параллельна оси времени Ot и отстоит от нее на расстоянии d. Кривые L_3 , L_4 изображают соответственно законы (1), (2). Область Σ' ограничена осью времени Ot, прямой L_2 и кривой L_4 . Точка B_1 отвечает границе B

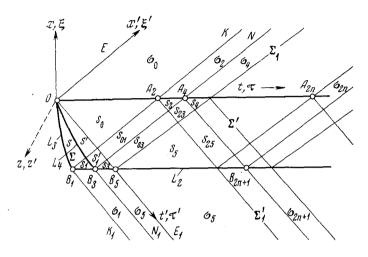


Рис. 2

иластинки в момент времени $t_1=f_1^{\,0}(-d)$, когда фронт, распространяющийся по верхней стороне пластинки, достигает этой границы. Аналогично определяется точка B_3 , отвечающая границе B в момент времени $t_3=f_2^{\,0}(-d)$. Пары прямых OE и OE_1 , B_1K и B_1K_1 , B_3N и B_3N_1 представляют собой линии пересечения плоскости xt с характеристическими поверхностями волнового уравнения. Границами области Σ_1 служат прямая OE и ось Ot, а границами области Σ_1' — прямые B_1K_1 и L_2 (рис. 2).

Прямые OE_1 , B_1K и B_3N многократно отражаются от границ области Σ' . Наряду с координатами точек O, B_1 и B_3 отметим координаты точек $O(0, t_0 = 0)$, $A_2(0, t_2)$, $A_4(0, t_4)$,..., $A_{2n}(0, t_{2n})$,..., $B_1(-d, t_1)$, $B_3(-d, t_3)$, $B_5(-d, t_5)$,..., $B_{2n+1}(-d, t_{2n+1})$,... Характеристические конусы с вершинами, расположенными в точках O, A_2 , A_4 ,..., A_{2n} ,..., B_1 , B_3 , B_5 ,... ..., B_{2n+1} ,... разделяют пространство xzt на области с различным аналитическим видом решения задачи. С этой точки зрения область Σ_1 разделяется на области σ_0 , σ_2 , σ_4 ,..., σ_{2n} ,...; область Σ_1' —на области σ_1 , σ_3 , σ_5 ,..., σ_{2n+1} ,...; область Σ —на s, s_1 и область Σ' разделяется на области s', s_1' , s_0 , s_0 , s_0 , s_2 , s_3 , s_0 , s_2 , ..., s_{2n} , s_{2n+1} ,...

Функции φ_1 и φ_2 являются искомыми функциями внутри области, ограниченной огибающей поверхностью семейства характеристических конусов с вершинами, расположенными на дуге OB_1 (кривая L_3) и обращенными в сторону возрастающих значений времени. Вне указанной области функции φ_1 и φ_2 тождественно равны нулю.

Представим каждый из потенциалов φ_1 и φ_2 в виде двухкратного интеграла, под знаком которого содержится нормальная к плоскости xt производная потенциала (формула (6) статьи (6)). Используя граничные условия (3), (4) и (6), представим потенциал $\varphi(x, z, t)$ для $z \ge 0$ ($z \to 0$

при z > 0) в виде

$$\varphi^* = -\frac{1}{2\pi} \int_{\sigma} A_{\rm B}^*(\xi', \tau') \frac{d\xi', d\tau'}{r} - K(x', z', t'), \tag{7}$$

$$K = \frac{1}{2\pi} \int_{\delta} \left[\varphi_{1z'}^*(\xi', z', \tau') \right]_{z'=0} \frac{[d\xi', d\tau']}{r} + \frac{1}{2\pi} \int_{\delta', z'} \left[\varphi_{1z'}^*(\xi', z', \tau') \right]_{z'=0} \frac{d\xi', d\tau'}{r}, \tag{7}$$

$$r = \left((x' - \xi') (t' - \tau') - (z')^2 \right)^{\frac{1}{2}},$$

и для $z \le 0$ $(z \to 0$ при z < 0) в виде

$$\varphi^* = \frac{1}{2\pi} \int_{\sigma'} A_{\mathrm{H}}^* \overline{(\xi', \tau')} \frac{d\xi' d\tau'}{r} + K(x', z', t'). \tag{8}$$

Области σ , σ' , δ , δ' представляют собой ссответственно части областей $\Sigma + \Sigma'$, Σ' , Σ_1 , Σ_1' , отсекаемые характеристическим конусом с вершиной в точке с координатами x, z, t и обращенным в сторону убывающих значений времени. Переменные x', z', t' связаны с переменными x, z, t соотношениями: c(x'-t')=2x, cz'=z, t'+x'=2t. Через ϕ^* , $\phi^*_{1z'}$, $A_{\scriptscriptstyle B}^*$, $A_{\scriptscriptstyle H}^*$ обозначены функции ϕ , $\phi_{\scriptscriptstyle 1z}$, $A_{\scriptscriptstyle B}$, $A_{\scriptscriptstyle H}$ в новых переменных.

3. Обозначим неизвестную производную ϕ_{12} в областях σ_0 , σ_2 , σ_4 , ..., σ_{2n} , ... через θ_0 , θ_2 , θ_4 , ..., θ_{2n} , ... и в областях σ_1 , σ_3 , σ_5 , ..., σ_{2n+1} , ... – через θ_1 , θ_3 , θ_5 , ..., θ_{2n+1} , ... Используя условие (5), построим интегральные уравнения, которым удовлетворяют функции θ_{2n} и θ_{2n+1} , n=0, 1, 2, 3, ..., и решим их, применяя метод, предложенный ранее $\binom{7}{8}$.

Решения θ_{2n} и θ_{2n+1} для $n \ge 2$ найдем в виде рекуррентных формул

$$\theta_{2n}(\xi',\tau') = -\frac{1}{\pi} \frac{1}{(\xi'-\tau')^{1/2}} \left\{ \int_{\tau'-2d/c}^{\tau'} \frac{A_{\rm B}^*(\xi,\tau') + A_{\rm H}^*(\xi,\tau')}{2} \frac{(\tau'-\xi)^{1/2}}{\xi'-\xi} d\xi + \int_{\xi_{2n-1}}^{\tau'-2d/c} \theta_{2n-1}(\xi,\tau') \frac{(\tau'-\xi)^{1/2}}{\xi'-\xi} d\xi + \sum_{i=0}^{n-2} \int_{\xi_{2i+1}}^{\xi'_{2i+3}} \theta_{2i+1}(\xi,\tau') \frac{(\tau'-\xi)^{1/2}}{\xi'-\xi} d\xi \right\}, \quad (9)$$

где пределы интегрирования ξ_1' , ξ_3' , ξ_5' ,..., ξ_{2n-1} суть координаты точек $B_1, B_3, B_5, \ldots, B_{2n-1}$;

$$\theta_{2n+1}(\xi',\tau') = -\frac{1}{\pi} \frac{1}{(\tau'-\xi'-2d/c)^{1/2}} \left\{ \int_{\xi'}^{\xi'+2d/c} \frac{A_{\mathrm{H}}^{*}(\xi',\tau) + A_{\mathrm{H}}^{*}(\xi',\tau)}{2} \frac{(\xi'+2d/c-\tau)^{1/2}}{\tau'-\tau} d\tau + \int_{\tau_{2n-4}}^{\xi'} \theta_{2n-4}(\xi',\tau) \frac{(\xi'+2d/c-\tau)^{1/2}}{\tau'-\tau} d\tau + \sum_{i=0}^{n-3} \int_{\tau_{2i}}^{\tau_{2i+2}} \theta_{2i}(\xi',\tau) \frac{(\xi'+2d/c-\tau)^{1/2}}{\tau'-\tau} d\tau \right\}$$
(10)

(\sum_{i} определена для $n \ge 3$), где пределы интегрирования τ_0' , τ_2' , τ_4' , ..., $\dot{\tau}_{2n-4}$ суть координаты точек $O, A_2, A_4, \ldots, A_{2n-4}$. Решение интегральных уравнений для $\theta_0, \theta_1, \theta_2$ и θ_3 найдем в виде

$$egin{aligned} heta_{0}\left(\xi', au'
ight) &= -rac{1}{2\pi} rac{1}{\left(\xi'- au'
ight)^{1/2}} \left\{ \int\limits_{\chi_{1}\left(au'
ight)}^{ au'} A_{\mathrm{B}}^{*}(\xi, au') rac{\left(au'-\xi
ight)^{1/2}}{\xi'-\xi} \, d\xi +
ight. \\ &+ \int\limits_{\chi_{2}\left(au'
ight)}^{ au'} A_{\mathrm{H}}^{*}(\xi, au') rac{\left(au'-\xi
ight)^{1/2}}{\xi'-\xi} \, d\xi
ight\}, \end{aligned}$$

$$\begin{split} \theta_{1}(\xi',\tau') &= -\frac{1}{2\pi} \frac{1}{(\tau'-\xi'-2d/c)^{1/2}} \int_{\chi_{1}^{0}(\xi')}^{\xi'+2d/c} A_{\mathrm{B}}^{*}(\xi',\tau) \frac{(\xi'+2d/c-\tau)^{1/2}}{\tau'-\tau} d\tau, \\ \theta_{2}(\xi',\tau') &= -\frac{1}{2\pi} \frac{1}{(\xi'-\tau')^{1/2}} \left\{ \int_{\tau'-2d/c}^{\tau'} A_{\mathrm{B}}^{*}(\xi,\tau') \frac{(\tau'-\xi)^{1/2}}{\xi'-\xi} d\xi + \right. \\ &+ \int_{\chi_{2}(\tau')}^{\tau'} A_{\mathrm{H}}^{*}(\xi,\tau') \frac{(\tau'-\xi)^{1/2}}{\xi'-\xi} d\xi \right\} - \frac{1}{\pi} \frac{1}{(\xi'-\tau')^{1/2}} \int_{\xi'}^{\tau'-2d/c} \theta_{1}(\xi,\tau') \frac{(\tau'-\xi)^{1/2}}{\xi'-\xi} d\xi, \\ \theta_{3}(\xi',\tau') &= \theta_{1}(\xi',\tau') - \frac{1}{2\pi} \frac{1}{(\tau'-\xi'-2d/c)^{1/2}} \int_{\chi_{2}(\xi)}^{\xi'+2d/c} A_{\mathrm{H}}^{*}(\xi',\tau) \frac{(\xi'+2d/c-\tau')^{1/2}}{\tau'-\tau} d\tau, \end{split}$$

где функции $\xi' = \chi_1(\tau')$ и $\xi' = \chi_2(\tau')$ — соответственно уравнения кривых L_3 и L_4 в переменных x' и t'. Функции χ_1^0 и χ_2^0 — обращения функций χ_1

Итак, зная решения θ_0 , θ_1 , θ_2 , θ_3 , последовательно можно вычислить по формулам (9) и (10) функции θ_4 , θ_5 ,..., θ_{2n} , θ_{2n+1} для любого номера n. В частности, полагая $A_n = 0$, получим решение задачи в случае, когда возмущения распространяются только по верхней стороне пластинки, а нижняя сторона пластинки не деформируется.

Решение задачи в случае движущейся пластинки мы дадим в следую-

Институт проблем механики Академии наук СССР Москва Поступило 24 IV 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Л. И Седов, Механика сплошной среды, **2**, 1970. ² Л. И. Седов, Плоские задачи гидродинамики и аэродинамики, изд. 2, 1966. ³ Л. И. Седов, УМН, в. 5 (1940). ⁴ М. Д. Хаскинд, ЖЭТФ, **16**, в. 7 (1946). ⁵ М. Д. Хаскинд, Прикл. матем. и мех., **11**, в. 1 (1946). ⁶ Е. А. Красильщикова, ДАН, **203**, № 2 (1972). ⁷ Е. А. Красильщикова, Крыло конечного размаха в сжимаемом потоке, 1952. ⁸ Е. А. Кгаssilchtchikova, Intern. Congress for Applied Mechanics, IX, Brussels, 1956, Actes, **3**, 1957.