УДК 51.31

MATEMATHKA

А. С. КРОНРОД

О НЕМАЖОРИРУЕМОМ РЕЦЕПТЕ ВЫБОРА ДОВЕРИТЕЛЬНОЙ ОБЛАСТИ ПРИ ЗАДАННОМ УРОВНЕ ДОСТОВЕРНОСТИ

(Представлено академиком И. Г. Петровским 16 V 1972)

Пусть $F(\bar{x}, \bar{a})$ — измеримая в смысле *n*-мерной меры Лебега плотность вероятности случайной векторной величины $\bar{x} \equiv x_s(\bar{a})$, где $\bar{a} \equiv \{a_i\}$ — тоже вектор, причем $s = 1, 2, \ldots, n$; $i = 1, 2, \ldots, k$.

Пусть в пространстве $A_h = \{a_i\}$ задана вполне аддитивная мера μ . На распределение $\phi(\bar{a})$ накладывается лишь предположение измеримости.

Ставится следующий вопрос: при конкретной реализации ξ случайной величины $\bar{x}(\bar{a}_0)$ и заданного $\varepsilon>0$ указать область $Q(\bar{\xi},\,\varepsilon)\subset A_k$ такую, чтобы $\bar{a}_0 \in O(\xi, \varepsilon)$ с достоверностью $1 - \varepsilon$.

Задание $Q(\bar{\xi},\, \epsilon)$ по $\bar{\xi}$ и ϵ мы назовем рецептом. Рецепт выбора доверительной области называется не мажорируемым, если не существует такого рецепта построения $Q'(\bar{\xi}, \varepsilon)$ по $\bar{\xi}$ и ε , что

$$\mu[Q'(\bar{\xi}, \, \varepsilon)] < \mu[Q(\bar{\xi}, \, \varepsilon)]$$

при любом выборе μ -измеримого закона распределения $\phi(\bar{a})$.

Teopema 1. $\dot{\Pi}$ усть задано $\varepsilon > 0$. $\dot{\Pi}$ усть точке \bar{a}_0 соответствует измеримое лебегово множество $P \equiv P(\bar{a}_0, \ \epsilon)$ в пространстве R_n такое, что $F(\bar{x}, \bar{a}_0) \geqslant F(\bar{y}, \bar{a}_0)$ при $\bar{x} \in P$ и $\bar{y} \notin P$, причем

$$\int_{P} F \, dx = 1 - \varepsilon.$$

Kаждой реализации ξ случайной величины \bar{x} сопоставим область $Q(ar{\xi},\,arepsilon) \subset A_{k}$, включающую те и только те значения $ar{a},\,\,\partial$ ля которых $ar{\xi}$ \in $\in P(\bar{a}, \varepsilon)$.

Tакое задание области $Q(\bar{\xi})$ является немажорируемым рецептом.

Доказательство этого утверждения легко следует из теоремы Фубини (достаточно только рассмотреть б-образные распределения вектоpob \bar{a}).

Теорема 2. Пусть теперь задана априорная плотность вероятности

 $\varphi(\bar{a})$ для вектора \bar{a} .

Тогда немажорируемый рецепт построения доверительной области $Q(\bar{\xi},\,arepsilon)$ с уровнем достоверности 1-arepsilon состоит в том, что для данной реализации $\bar{\xi}$ берется область $Q(\bar{\xi}, \varepsilon) \subset A_k$, являющаяся верхним лебеговским множеством функции $\Phi(\bar{\xi}, \bar{a}) = F(\bar{\xi}, \bar{a}) \varphi(\bar{a})$ таким, что $\int\limits_{Q(\bar{\xi}, \bar{a})} \Phi(\bar{\xi}, \bar{a}) \, da = (1 - \varepsilon) \int\limits_{Q(\bar{\xi}, \bar{a})} \Phi(\bar{\xi}, \bar{a}) \, da.$

$$\int\limits_{\mathbf{Q}(\overline{\xi},\varepsilon)}\Phi\left(\overline{\xi},\overline{a}\right)da=(1-\varepsilon)\int\limits_{}^{}\Phi\left(\overline{\xi},\overline{a}\right)da.$$

В обеих теоремах предполагается, что все встречающиеся интегралы сходятся.

Е. М. Ландис заметил, что если теорема 2 дает окончательное решение вопроса, то для теоремы 1 возможна более сильная постановка: для каждой дан пой реализации $\bar{\xi}$ найти область $Q(\bar{\xi}, \varepsilon)$ так, чтобы при заданном уровне достоверности 1 — є эта область была минимальная. Эту задачу я рещать не умею.

Центральный научно-исследовательский институт патентной информации и технико-экономических исследований Комитета по делам изобретений и открытий при Совете Министров СССР

Поступило 16 IV 1972