УДК 519.1

MATEMATUKA

В. Б. АЛЕКСЕЕВ

О ЧИСЛЕ к-ЗНАЧНЫХ МОНОТОННЫХ ФУНКЦИЙ

(Представлено академиком А. Н. Тихоновым 26 IV 1972)

Пусть S — произвольное частично упорядоченное множество, $|S|=k\geqslant 2$. Через S^n обозначим n-ю декартову степень S, τ . е. множество всех наборов $(\alpha_1,\,\alpha_2,\,\ldots,\,\alpha_n)$ длины n, в которых все $\alpha_i \in S$. Про два набора $\bar{\alpha}=(\alpha_1,\,\ldots,\,\alpha_n)$ и $\bar{\beta}=(\beta_1,\,\ldots,\,\beta_n)$ будем говорить, что $\bar{\alpha}\leqslant\bar{\beta}$, если $\alpha_i\leqslant\bar{\beta}_i$ для всех i. При этом S^n также становится частично упорядоченным множеством. Если $\bar{\alpha}\leqslant\bar{\beta}$ и $\bar{\alpha}\ne\bar{\beta}$, будем писать $\bar{\alpha}<\bar{\beta}$. Функцию n переменных $f(x_1,\ldots,\,x_n)$, отображающую S^n в S, будем называть монотонной относительно S в том и только в том случае, если для любых паборов $\bar{\alpha}\in S^n$ и $\bar{\beta}\in S^n$ из того, что $\bar{\alpha}<\bar{\beta}$, следует $f(\bar{\alpha})\leqslant f(\bar{\beta})$. Семейство функций, монотонных относительно S, в том случае, когда в S имеется ровно один максимальный и ровно один минимальный элемент, образует один из так называемых предполных классов, играющих важную роль при изучении вопросов полноты в k-значных логиках $\binom{1}{s}$.

Число различных функций n переменных, монотонных относительно S, будем обозначать $\psi_s(n)$. Целью данной заметки является изучение функции $\psi_s(n)$ для произвольного множества S.

Для частного случая, когда $S = \{0, 1\}$ с неравенством 0 < 1, соответствующая функция $\psi(n)$ изучалась рядом авторов. Последний результат, полученный в $\binom{3}{2}$, имеет вид

$$2^{(1+\alpha_n)C_n^{[n/2]}} \leqslant \psi(n) \leqslant 2^{(1+\beta_n)C_n^{[n/2]}},$$

где $\alpha_n = Ce^{-n/4}$; $\beta_n = (C'\log n)/\sqrt{n}$. Отсюда, в частности, получается асимптотика для $\log \psi(n)$ при $n \to \infty$.

Если S тривиально, т. е. любые два элемента в S несравнимы, то, очевидно, любая функция, отображающая S^n в S, монотонна относительно S. В дальнейшем будем предподагать, что S не тривиально.

В дальнейшем будем предполагать, что S не тривиально. Для функции $\psi_S(n)$ при произвольном S из (4) может быть получен порядок для $\log \psi_S(n)$:

$$\log \psi_s(n) \times k^n / \sqrt[n]{n}$$
.

Результат, полученный в данной заметке, удобно представить в виде

$$\psi_{S}(n)=d^{K}, \quad K=\frac{1}{\sqrt{2\pi D}}\frac{k^{n}}{\sqrt{n}}(1+\varepsilon(n)),$$

где $\varepsilon(n) \to 0$ при $n \to \infty$, а для констант d и D, зависящих от S, будут даны алгоритмы вычисления их по данному S.

Для удобства будем считать, что исходное множество состоит из элементов 1, 2, ..., k. Множеству S сопоставим так называемый базисный граф — ориентированный граф с k вершинами, соответствующими элементам множества S, в котором дуга (i,j) имеется тогда и только тогда, когда i > j в S и не существует l такого, что i > l > j. Введем на плоскости ось z и сопоставим каждой точке A плоскости число z_A — проекцию A на ось z. В частности, если граф, соответствующий S, изображен на плоскости, то

каждой вершине i будет соответствовать число z_i . С каждым изображением базисного графа свяжем случайную величину $\xi = z_A$, где точка A может попасть в любую вершину графа с вероятностью 1/k. Тогда

$$M\xi = z_{\rm cp} = rac{z_1 + z_2 + \ldots + z_k}{k}, \quad D\xi = rac{1}{k} \sum_{i=1}^k (z_i - z_{
m cp})^2.$$

Изображение базисного графа назовем выделенным, если $z_i - z_j \ge 1$ для любой дуги (i, j) и после удаления всех дуг (i, j), для которых $z_i - z_j \ge 1$, для каждой связной компоненты в оставшемся графе будет $z_{\rm cp} = 0$. Выделенных изображений конечное число, и легко указать алгоритм, перебирающий все выделенные изображения. Выделенное изображение с наименьшей дисперсией назовем оптимальным.

Подмножество $T \subseteq S^n$ называется независимым, если любые два элемента из T несравнимы. Максимальную мощность независимого подмножества $T \subseteq S^n$ будем обозначать (S^n) . Величина (S^n) представляет самостоятельный интерес, а также играет важную роль при изучении $\psi_S(n)$.

Теорема 1. Для некоторой функции $\varepsilon_1(n)$ такой, что $\varepsilon_1(n) \to 0$ при $n \to \infty$,

$$(S^n) > \frac{1}{\sqrt{2\pi D}} \frac{k^n}{\sqrt{n}} (1 - \varepsilon_1(n)),$$

 $r\partial e\ D$ — $\partial ucnepcus$ оптимального изображения S.

Доказательство. По оптимальному изображению S построим соответствующее ему изображение S^n . Будем изображать S^n в виде базисного графа, причем $\tilde{\alpha} = (\alpha_1, \ldots, \alpha_n)$ будем располагать так, чтобы было $z_{\alpha} = z_{\alpha_1} + \ldots + z_{\alpha_n}$. Пусть $M = \{\tilde{\alpha}: -1/2 < z_{\alpha} \le 1/2\}$. Доказательство теоремы основано на том, что M— пезависимое множество. |M| оценивается с использованием теоремы Б. В. Гнеденко $\binom{5}{2}$.

Последовательность $\tilde{\alpha}_1 < \tilde{\alpha}_2 < \ldots < \tilde{\alpha}_s$ называется цепью.

 Π е м м а 1. Множество S^n можно разбить на цепи так, что для подмножества R_1 цепей, не проходящих через M, будет

$$|R_1| < \frac{C \ln^4 n}{n} k^n,$$

 $e\partial e C$ — некоторая константа.

Эта лемма доказывается путем довольно громоздких построений с использованием теоремы о паросочетаниях (6) и теоремы Γ ейла из теории транспортных задач (7).

Для множества $R_{\scriptscriptstyle 0}$ цепей, проходящих через M, при $n \to \infty$ будет

$$|R_0| = |M| \sim \frac{1}{\sqrt{2\pi D}} \frac{k^n}{\sqrt{n}}. \tag{1}$$

Из леммы 1 и теоремы 1 получаем следующую теорему.

T е о р е м а 2. $(S^n) \sim \frac{1}{\sqrt{2\pi D}} \frac{k^n}{\sqrt{n}}$, $\epsilon \partial e = D - \partial u c n e p c u s$ оптимального изображения S.

Будем писать $H_1 \leqslant H_2$, где $H_1 \subseteq S$ и $H_2 \subseteq S$, если $a \leqslant b$ для любых $a \in H_1$ и $b \in H_2$.

Рассмотрим всевозможные цепочки $H_0 \leqslant H_1 \leqslant \ldots \leqslant H_{s+1}$, где все $H_i \subseteq S, \ s \geqslant 1, \ |H_0| = |H_{s+1}| = 1$ и $H_i \neq H_j$ при $i \neq j$. Таких цепочек конечное число. Пусть $d = \max(|H_1| \cdot \ldots \cdot |H_s|)$, где максимум берется по всем описанным выше цепочкам.

Теорема 3. Для некоторой функции $\varepsilon_2(n)$ такой, что $\varepsilon_2(n) \to 0$ при $n \to \infty$,

$$\psi_{S}(n) > d^{K_{2}}, \quad K_{2} = \frac{1}{\sqrt{2\pi D}} \frac{k^{n}}{\sqrt{n}} (1 - \varepsilon_{2}(n)).$$

Доказательство. Существует цепочка $\{i\} \leq H_1 \leq \ldots \leq H_s \leq \{j\}$, для которой $|H_1| \cdot \ldots \cdot |H_s| = d$. Рассмотрим оптимальное изображение S и соответствующее ему изображение S^n . Пусть $M_r = \{\tilde{\alpha}: r-1 < z_{\tilde{\alpha}} \leq r\}$, где $r=1, 2, \ldots, s$. Пусть $f(\tilde{\alpha}) \in H_r$, если $\tilde{\alpha} \in M_r$; $f(\tilde{\alpha}) = i$, если $z_{\tilde{\alpha}} \leq 0$; и $f(\tilde{\alpha}) = j$, если $z_{\tilde{\alpha}} > s$. Тогда f монотонна относительно S. Число таких функний

$$|H_1|^{|M_1|} \cdot \ldots \cdot |H_s|^{|M_s|}. \tag{2}$$

Используя теорему Б. В. Гнеденко (5), можно показать, что для некоторой функции $\varepsilon_2(n)$ такой, что $\varepsilon_2(n) \to 0$ при $n \to \infty$,

$$|M_r| > \frac{1}{\sqrt{2\pi D}} \frac{k^n}{\sqrt{n}} (1 - \epsilon_2(n))$$
 (3)

для всех $r = 1, 2, \ldots, s$. Из (2) и (3) получим утверждение теоремы.

Пусть τ — произвольная подстановка координат в наборах из S^n . Она индуцирует подстановку среди наборов и переводит разбиение на цепи P, построенное в лемме 1, в новое разбиение $\tau(P)$. Рассматриваются все n! получаемых так разбиений на цепи. Для каждого разбиения рассматривается $\mu(n)$ специальным образом построенных упорядоченностей цепей, причем

$$\log \mu(n) < k^{n/2+C \sqrt[n]{n} \ln^3 n}, \tag{4}$$

где C — некоторая константа.

Пусть значения функции f, монотонной относительно S, заданы на части наборов и $f(\tilde{\gamma})$ сще не определено. Если из уже заданных значений вытекает по монотонности, что $f(\tilde{\gamma}) \ge i$ хотя бы для одного $i \in S$, то будем говорить, что значение функции f па наборе $\tilde{\gamma}$ ограничено снизу. Точно так же будем говорить об ограничениях сверху.

Для данной функции f, монотонной относительно S, и для данного упорядоченного разбиения на цепи назовем цепь $\tilde{\alpha}_1 < \tilde{\alpha}_2 < \ldots < \tilde{\alpha}_s$, входящую в $\tau(R_0)$, особой, если после задания функции на всех предыдущих цепях будет иметь место хотя бы одна из следующих ситуаций: 1) $f(\tilde{\alpha}_1)$ не ограничено снизу; 2) $f(\tilde{\alpha}_s)$ не ограпичено сверху; 3) для некоторого $j \geq 2$ ограничения снизу на $f(\tilde{\alpha}_j)$, обусловленные заданием функции на предыдущих цепях, усиливаются при задании $f(\tilde{\alpha}_{j-1})$.

Имеет место

 Π емм а 2. Для каждой функции j, монотонной относительно S, среди $n!\mu(n)$ рассмотренных выше упорядоченных разбиений на цепи имеется такое, при котором особых цепей не более, чем $Ck^nn^{-\frac{\gamma_i}{4}}$, где C — некоторая константа.

Для каждого из $n!\mu(n)$ упорядоченных разбиений S^n на цепи будем задавать функции согласно порядку цепей, причем так, чтобы полученная функция была монотонна относительно S и особых цепей было бы не более t (t — некоторый параметр). Имеет место

 Π е м м а 3. На каждой неособой цепи можно задать функцию не более чем d способами, на произвольной цепи — не более чем $(kn+1)^h$ способами.

Из леммы 3 вытекает, что число функций, которые будут нами построены, не превосходит

$$n! \mu(n) C_R^t (kn + 1)^{k(|R_t|+t)} d^{R-t},$$

где $R=|R_0|$. По лемме 2, если $t=t_0=Ck^nn^{-3/4}$, то нами хотя бы по одному разу будут построены все функции, монотонные относительно S. Отсюда

$$\psi_{S}(n) \leqslant n! \ u(n) \ C_{R}^{l_0} (kn+1)^{k(|R_1|+l_0)} \ d^{R-l_0}$$

Учитывая (1), (4) и лемму 1, получим

$$\log [n! \mu(n) C_R^{t_0} (kn+1)^{k (|R_1|+l_0)}] = o(R).$$

Поэтому, учитывая (1), получаем следующую теорему.

Теорема 4. Для некоторой функции $\varepsilon_3(n)$ такой, что $\varepsilon_3(n) \to 0$ при $n \to \infty$,

$$\psi_{S}(n) < d^{K_3}, \quad K_3 = \frac{1}{\sqrt{2\pi D}} \frac{k^n}{\sqrt{n}} (1 + \epsilon_3(n)).$$

Из теорем 3 и 4 вытекает основная

Теорема 5. Для некоторой функции $\varepsilon(n)$ такой, что $\varepsilon(n) \to 0$ при $n \to \infty$,

$$\psi_{S}(n)=d^{K},\quad K=rac{1}{\sqrt{2\pi D}}rac{k^{n}}{\sqrt{n}}(1+\epsilon(n)).$$

Подобный же результат верен и для функций, отображающих S_1^n в S_2 , только в этом случае основание d определяется с помощью S_2 , а показатель с помощью S_1 .

Московский государственный университет им. М. В. Ломоносова

Поступило 7 IV 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ С. В. Яблонский, Тр. Матем. инст. им. В. А. Стеклова АН СССР, **51**, 5 (1958). ² В. В. Мартынюк, Сборн. Проблемы кибернетики, в. 3, 49 (1960). ³ D. Kleitman, Proc. Am. Math. Soc., **21**, № 3, 677 (1969). Русский пер. Д. Клейтмен, Кибернетич. сборн., № 7, 43 (1970). ⁴ В. К. Коробков, Дискретный анализ, в. 5. 19 (1965). ⁵ Б. В. Гнеденко, Курс теории вероятностей, «Наука», 1964. ⁶ О. Оре. Теория графов, «Наука», 1968. ⁷ Л. Форд, Д. Фалкерсон, Потоки в сетях, М., 1966.