Доклады Академии наук СССР 1973. Том 208, № 4

УДК 541.15: 543.27: 546.62-31

ФИЗИЧЕСКАЯ ХИМИЯ

Н. Г. ШИРИКОВ, В. Ф. АНУФРИЕНКО, Л. А. САЗОНОВ

ИССЛЕДОВАНИЕ ПАРАМАГНИТНЫХ ЦЕНТРОВ В у-ОБЛУЧЕННОЙ ОКИСИ АЛЮМИНИЯ

(Представлено академиком Г. К. Боресковым 26 VI 1972)

Рядом авторов (1-6) наблюдалось появление сигнала э.п.р. в результате облучения окиси алюминия и изменение ее каталитических и адсорбционных свойств (7). Однако вопрос о природе парамагнитных центров (п.м.ц.) и их реакционной способности остался открытым.

В данной работе изучена природа п.м.ц. в облученной γ-окиси алюминия и их реакционная способность по отношению к O₂, H₂ и CO₂. Использовалась γ-Al₂O₃, полученная прокаливанием при 700° С гидроокиси, осажденной аммиаком из раствора азотнокислого алюминия марки ч.д.а. Содержание примеси железа не превышало 0,01 вес. %. Поверхность полученной γ-Al₂O₃ 100 м²/г. Перед облучением образцы прогревались при 600° в токе

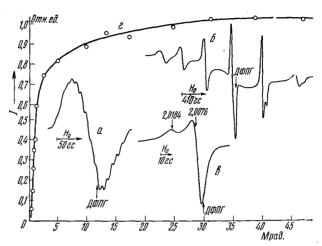
Сигналы э.п.р. в ү-облучениой Al₂O₃

Таблица 1

	Характеристики сигнала	Рису- нок	Результат взаимодействия с газами			Идентифика-
	э.п.р.		H ₂	CO ₂	O ₂	дия п.м.ц.
A	Слегка асимметричная линия шириной $43-50$ гс. $g=2,0155$		Исчезает на 80—90%	Превра- щается в сигнал СО3 (рис. 1в)	Обратимо уширяется	0
В	11 линий с.т.с. от двух ядер Al на фоне сигнала A $a = 10$ гс, $g = 2,0036$	1 <i>a</i>	То же	То же	То же	Al Al
C	$ \begin{vmatrix} 6 & \text{линий} & \text{с.т.c.}, & a_{\parallel} = \\ & = 485 & \text{rc}, & a_{\perp} = 460 & \text{rc}, \\ g_{\parallel} = 1,985, & g_{\perp} = 2,020, \\ G_{\text{s}}^2 = 0,465, & G_{p}^2 = \\ & = 0,396 \end{vmatrix} $	16	Не изменя- ется	Превра- щается в сигнал ${\rm CO_2^-}$ (рис. 3)	Превраща- ется в сиг- нал О ₂ - (рис. 2 <i>ж</i>)	Al ²⁺
D	Синглет шириной 10 гс с $g=2,0045$. Наблюдается только в присутствии адс. O_2	26	Частично исчезает *		В избытке О ₂ обратимо уширяется	Поверхно- стный <i>F</i> -центр

^{*} При действии смеси Н2 + О2 превращается в сигнал О2-.

 O_2 и затем вакуумировались при температурах $25-920^\circ$. Облучение производилось γ -лучами Co-60 при 40° . Спектры снимались при -196° на спектрометре JES-3BX на длине волны 3.2 см.


В необлученных образцах наблюдался только сигнал примесного Fe^{3+} с g=4,27. Облучение вызывает появление сигналов, характеристики которых приведены в табл. 1. Образующиеся центры не отжигаются при комнатной температуре, а соотношение между ними зависит от условий предварительной обработки и облучения катализатора. Сигнал А наблюдается в образцах, оттренированных при любой температуре, и его параметры хорошо совпадают с сигналом, описанным в $\binom{1-4}{6}$. В образцах, оттрениро-

ванных при $400-700^\circ$ на фоне сигнала A наблюдался сигнал B, однако в оттренированных при 920° он уже не обнаруживался. Зависимость общей концентрации п.м.ц. A и B от температуры тренировки при дозе облучения $20~\rm Mrn$ приведена ниже.

Т-ра тренировки, °C 25 120 250 400 550 700 920 Концентрация п.м.ц.
$$(1\pm0.5\cdot10^{18},\ r^{-1})$$
 0,2 0,6 0,7 1,0 0,9 0,7 0,4

На рис. 1г приведена зависимость интенсивности сигналов A+B от дозы облучения для образца, тренированного при 500° . Обработка H_2 при 20° снижает интенсивность сигналов A+B на $80-90\,\%$ без появления ка-

Рис. 1. Спектры э.п.р. облученной окиси алюминия, вакуумированной при 500° С (a), вакуумированной при 700° С, облученной в H_2 (δ) , ϵ —спектр ион-радикала CO_3 —, ϵ —зависимость иптенсивности сигнала от дозы облучения

ких-либо новых сигналов (рис. 2e). Одновременно исчезает и слабая серая окраска, характерная для облученной Al_2O_3 . В атмосфере O_2 сигнал A+Bобратимо уширяется и интенсивность остатка, принадлежащего объемным дефектам, соответствует ~ 10% от исходной. При обработке СО2, вместо сигналов А + В возникает сигнал, приведенный на рис. 16, характеризующийся значениями $g_{\parallel}=2,0184$ и $g_{\perp}=2,0076$. Согласно данным (8), такой сигнал принадлежит ион-радикалу CO_3 -. Таким образом, центры A и B по значениям g-факторов и характеру взаимодействия с H₂ и CO₂ могут быть отнесены к дыркам, локализованным на поверхностных кислородах, что соответствует О-. Наличие 11 линий с.т.с. позволяет заключить, что пентр В представляет собой О-, связанный слабой ковалентной связью с двумя атомами алюминия. Наличие такого центра позволяет считать, что в необлученной Al_2O_3 имеются дефекты, являющиеся так называемыми напряженными аллоксановыми мостиками (9) или с-местами (10). Бесструктурная форма сигнала А, видимо, обусловлена пеоднородностью центров, приводящей к смазыванию анизотронии, характерной для О-. Подтверждением неоднородности центров служит то, что с повышением температуры от -78 до 180° все большая часть О- при взаимодействии с CO₂ превращается в СО₃-. Облучение в СО₂ также приводит к образованию СО₃- (концентрация 10^{13} см $^{-2}$), сопровождающемуся появлением интенсивной фиолетовой окраски.

Сигнал С становится заметным в образцах, прогретых при 500° , и его интенсивность растет с повышением температуры тренировки. Если тренировка включала дополнительную обработку H_2 , сигнал С появлялся уже после тренировки при 400° . При облучении в H_2 образцов, тренированных при 700° , наблюдается только сигнал С (рис. 16). Если Al_2O_3 тренировалась в вакууме без восстановления, а H_2 папускался в ампулы при 20° , интенсивность сигнала С была примерно в 3 раза выше, чем в вакуумированных образцах. Параметры сигнала С позволяют однозначно приписать его Al^{2+} . Из значений a_s и a_p констант с.т.с. следует, что неспаренный электрон па-

ходится на sp-гибридной орбите, что соответствует сильному понижению симметрии связи иона Al^{2+} по сравнению с объемной Al_2O_3 . В работах (11 , 12) обсуждалась возможность термического образования Al^{2+} на поверхности Al_2O_3 . Наши данные показывают, что термическая обработка приводит к образованию на поверхности ионов Al^{3+} с низкой координацией и только в результате облучения Al^{3+} переходит в Al^{2+} . Максимальная концентрация Al^{2+} составляла 10^{12} см $^{-2}$. Обработка водородом не приводит

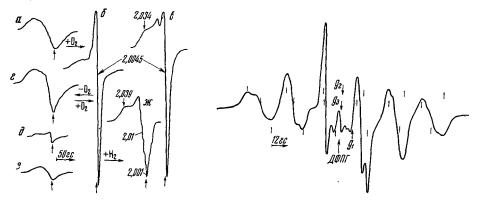


Рис. 2. Изменения спектров э.п.р. при взаимодействии п.м.ц. с O_2 и H_2

Рис. 3. Спектр $\mathrm{CO_2}^-$, образующийся при взаимодействии $\mathrm{CO_2}$ с $\mathrm{AI^2}$ +

к изменению сигнала Al²⁺. При взаимодействии с Co₂ сигнал Al²⁺ превращается в сигнал, приведенный на рис. 3, с параметрами $g_1 = 1.997$. $a_1 =$ = 24 гс; $g_2 = 2{,}0024$, $a_2 = 30$ гс; $g_3 = 2{,}003$, $a_3 = 24{,}5$ гс. Сопоставление характеристик сигнала с данными (8) для CO₂- позволяет заключить, что сигнал принадлежит СО2-, стабилизированному в координационной сфере Al^{3+} . Обработка кислородом при -196° превращает сигнал Al^{2+} в сигнал O_2^- (рис. $2 \varkappa$) с нараметрами $g_x = 2{,}001, \ g_y = 2{,}01, \ z_z = 2{,}39, \ a_x = 4$ гс, $a_y = 4{,}5$ гс, a_z — неразрешима. Этот же сигнал образуется и при напуске O_2 на образец с CO₂-, т. е. происходит передача е от CO₂- к O₂ с образованием ион-радикала O₂-. На образцах, тренированных при 400°, адсорбция кислорода при 20° приводит к увеличению интегральной интенсивности сигналов за счет образования O_2 только на 5-10% (рис. 2ε). Дополнительная адсорбция O_2 при -196° в количестве $\sim 10^{12}$ молек/см² приводит к появлению сигнала D с интегральной интенсивностью примерно равной интенсивности исходного сигнала (рис. 26). Добавление избытка О $_2$ приводит к исчезновению сигнала D, а откачивание при 20° восстанавливает сигнал, приведенный на рис. 2г. При повторных циклах напуска и откачивания O_2 картина повторяется. Напуск водорода в ампулу с O_2 при -196° не изменяет сигнала D, а при 20° он необратимо переходит в O_2^{-1} (рис. 2π), сигнал О- при этом исчезает. При напуске газов в обратном порядке интенсивность образующегося O_2 в 3-4 раза меньше. Подобно водороду действуют ${
m C_2H_4}$ и ${
m CO.~B}$ случае обработки ${
m CO}$ интенсивность образующегося ${
m O_2}$ – равна удвоенной интенсивности сигнала D. Это можно понять, если допустить, что наряду с превращением сигнала D в О₂- происходят реакции:

$$CO + O^{-} \rightarrow CO_{2}^{-}, \tag{1}$$

$$CO_2^- + O_2 \rightarrow O_2^- + CO_2.$$
 (2)

В окиси алюминия, облученной в O_2 при -196° , наблюдается суперпозиция сигналов O_2^- и D (рис. 2s). В образцах, тренированных при 400° и облученных в H_2 , небольшой сигнал D наблюдается и без адсорбции кислорода (рис. 2d). При отжиге таких образцов наблюдалось небольшое возрастание интенсивности сигнала D и монотонное уменьшение A (рис. 4). Приведенные данные позволяют заключить, что сигнал D обусловлен по-

верхностными F-центрами, не наблюдаемыми в вакуумированных образцах вследствие больших времен релаксации. Облучение в H_2 и последующий отжиг приводят к изменению состояния поверхности так, что некоторые из F-центров становятся видимыми. Адсорбция O_2 вблизи F-центра в соотношении 1:1 приводит к сокращению времен релаксации за счет взаимодействия с парамагнитными молекулами O_2 на поверхности, а при дополнительной адсорбции O_2 происходит обычное уширение сигнала. Водород, повидимому, взаимодействует с ионами кислорода, входящими в структуру

F-пентров, и это приводит к возбуждению электрона, в результате чего он может быть захвачен молекулой адсорбированного кислорода с образованием O₂- или рекомбинировать с дыркой (при отсутствии O_2). На облученном силикагеле инициирование рекомбинации захваченных электронов и дырок адсорбцией подтверждено водорода изучением радиосорболюминеспенции (13).

Таким образом, при облучении окиси алюминия происходит стабилизация в

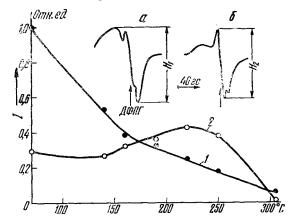


Рис. 4. Изменение интенсивности сигналов А (1) и D (2) при отжиге. a — сигнал до отжига, δ — после отжига при 200° С

равных количествах дырок и электронов, преимущественно на поверхностных дефектах, создаваемых предварительной обработкой. Электроны захватываются алюмокислородными комплексами, различающимися степенью координационной ненасыщенности алюминия. В крайнем случае электрон почти на 100% локализован на алюминии, что соответствует образованию Al²⁺, при меньшей координационной ненасыщенности захваченный электрон размазан по всему алюмокислородному комплексу, что аналогично образованию F-центра. Дырки захватываются ионами О2-, часть из которых представляет напряженные аллоксановые мостики (°). В случае восстановленных образцов в захвате дырок участвуют и примесные ионы Fe^{3+} . Вид дозной зависимости позволяет предположить, что неко**то**рая часть центров захвата образуется и в процессе облучения. Образование их, видимо, связано с радиолизом гидроксильных групп, что приводит к увеличению концентрации ${
m O}^-$, а также с восстановлением некоторых мест водородом, образовавшимся в результате радиолиза ОН-групп. Опыты по облучению в среде Н2 подтверждают, что такой процесс восстановления имеет место и приводит к увеличению концентрации Al²⁺.

Институт катализа Сибирского отделения Академии наук СССР Новосибирск Поступило 15 VI 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ O. R. Gillian, C. G. Yong, P. W. Levy, Bull. Am. Phys. Soc., 6, 117 (1961).

² J. Turkevich, Catalyst, Japan, 7, 3281 (1965).

³ G. J. K. Acress, D. D. Eley, J. M. Trillo, J. Catalysis, 4, № 1, 12 (1965).

⁴ D. D. Eley, M. A. Zammit, J. Catalysis, 21, 3, 366 (1971).

⁵ B. B. Казанский, Ю. И. Печерская, ЖФХ, 34, 2, 477 (1960).

⁶ Г. М. Долидзе, Ю. А. Колбановский и др., Изв. высш. учебн. завед. Физика, 3, 7 (1968).

⁷ E. H. Taylor, Advances in Catalysis, 18, 111 (1968).

⁸ П. Аткинс, М. Саймонс, Спектры ЭПР и строение неорганических радикалов, М., 1970.

⁹ E. B. Kornelius, T. H. Milliken et al., J. Phys. Chem., 59, 9, 809 (1955).

¹⁰ J. B. Peri, J. Phys. Chem., 70, 10, 3168 (1966).

¹¹ S. W. Weller, A. A. Montagna, J. Catalysis, 21, 3, 303 (1971).

¹² C. Hoang-Van, S. J. Teichner, J. Catalysis, 16, 1, 69 (1970).

¹³ P. Hilaire, Comm. Energie At. (France), Rappt. № 2260 (1962).