УДК 519.21.217

MATEMATUKA

Д. Е. ТЕМКИН

ОДНОМЕРНЫЕ СЛУЧАЙНЫЕ БЛУЖДАНИЯ В ДВУХКОМПОНЕНТНОЙ ЦЕПОЧКЕ

(Представлено академиком А. Н. Колмогоровым 3 V 1972)

Цель заметки — отметить некоторые особенности, обнаруженные при анализе случайных блужданий в двухкомпонентной неупорядоченной цепочке. Имеется бесконечная цепочка, в каждый узел которой помещается частица A или B. Вероятность заполнения частицей B равна C, и корреляция при заполнении отсутствует. В начальный момент времени t=0в некоторый узел помещена меченая частица M вместо имевшейся там Aили В. Частица М совершает блуждания, обмениваясь местами с ближайшими к ней частицами A и B. Так, M с частотой \mathbf{v}_{+A} обменивается местами с соседней справа частицей A и переходит на один шаг вправо (размерность v_{+A} совпадает с t^{-1}), а с частотой v_{-A} переходит влево за счет обмена с A; v_{+_B} и v_{-_B} — аналогичные частоты обмена местами M с B. Вследствие несимметричности перескоков М вправо и влево эта частица, совершая блуждания, будет дрейфовать вправо или влево в зависимости от соотношения между частотами и концентрацией С. Подобная схема случайных блужданий возникает, например, при анализе редупликации многокомпонентных цепей (1), диффузии (2) и кинетики фазовых превращений в сплавах (3-5). Отличие данной схемы блужданий от обычной (см., например, $\binom{6}{1}$, заключающееся в зависимости вероятности перескоков Mот структуры цепочки около M, приводит к интересным эффектам:

1) в некоторой области параметров C, $v_{\pm A}$ и $v_{\pm B}$ (а не в одной точке)

стационарная скорость дрейфа частицы M равна нулю (5);

2) возникают нестационарные явления. В период нестационарности меняется структура цепочки, если ее рассматривать в системе координат, связанной с частицей M, а такие характеристики процесса, как скорость дрейфа v частицы M и коэффициент диффузии, зависят от времени $\binom{2}{5}$.

В работе (1) решена задача о стационарной скорости дрейфа и распределении компонентов в цепочке относительно частицы M. Кратко воспроизведем схему вычисления v применительно к рассматриваемому здесь

случаю $(^3)$.

Пусть $\beta_1\beta_2...$ — некоторая последовательность расположения частиц A и B справа от M (узлам правее M приписывается индекс 1, 2, . . . ; $\beta_i = A$ или B), а $U_{\beta_1\beta_2...}$ — вероятность того, что частица M, переместившись на один шаг вправо за счет обмена местами с частицей β_1 , никогда не вернется в первоначальную позицию при условии, что следующими за β_1 являются частицы β_2 , β_3 , . . . Если ввести $\tau_{\beta_1\beta_2...}$ — среднее время, в течение которого M находится в позиции, перед которой имеется конфигурация $\beta_1\beta_2...$, то, как можно показать,

$$\tau_{\beta_1\beta_2...} = (\nu_{+\beta_1}U_{\beta_1\beta_2...})^{-1}. \tag{1}$$

При хаотичном распределении A и B в цепочке вероятность конфигурации $\beta_1\beta_2\dots$ равна произведению $C_{\beta_1}C_{\beta_2}\dots$, где $C_{\beta_i}=C$ при $\beta_i=B$ и (1-C) при $\beta_i=A$. Поэтому частица M в каждом узле цепочки находится в среднем в течение промежутка τ , равного

$$\tau = \sum_{\beta_1, \beta_2, \dots} \tau_{\beta_1, \beta_2, \dots} \prod_{i=1}^{\infty} C_{\beta_i}.$$
 (2)

	Неупорядоченная целочка, (10),										
ν-B n•10-5	0,0001 3,68	0,3 0,881	0,6 3,32	0,9 5,28	1,3 12,36	1,35 11,88	1,5 10	2,5* 6,8	4 16,08	6 12,52	1000 4,40
$v = \frac{\Delta}{t}$	194 286 281 07 2 0,691	61 221 0,541	83 736 207 545 0,403	0,253	636 398 0,055	605 509 0,036	0,0039	$ \begin{array}{r} -1350 \\ 339606 \\ -0,004 \end{array} $			198 993 0,212
$v_{\rm BHH}$	0,6940	0,5470	0,4000	0,2530	0,0570	0,0325	0,0055	0 0		-0,0783 -0,0733	

 Π р и м е ч а и и я. 1) n — число скачков частицы M, Δ — ее смещение из начального положения, сместилась влево на 1350 шагов и в течение последующих 5,6·10 5 скачков колебалась около этой

Средняя скорость дрейфа M вправо равна $v=1/\tau$. Вероятность $U_{\theta_1\theta_2}\dots$ удовлетворяет уравнению

$$U_{\beta_1\beta_2...} = \frac{v_{+\beta_2}}{(v_{+\beta_2} + v_{-\beta_1})} \left[U_{\beta_2\beta_3...} + (1 - U_{\beta_2\beta_3...}) U_{\beta_1\beta_2...} \right], \tag{3}$$

решением которого является

$$U_{\beta_1\beta_2} \dots = \left[1 + \sum_{k=1}^{\infty} \prod_{i=1}^{k} \left(\frac{v_{-\beta_i}}{v_{+\beta_{i+1}}}\right)\right]^{-1}.$$
 (4)

Учитывая (1), (2) и (4), получаем для скорости дрейфа вправо

$$v = v_{+A}v_{+B}(1 - \eta_1)/[v_{+B} + C(v_{+A} - v_{+B})], \quad \eta_1 \equiv C\frac{v_{-B}}{v_{+B}} + (1 - C)\frac{v_{-A}}{v_{+A}}. \quad (5)$$

Выражение для скорости дрейфа влево получается из (5) после изменения знака у v и циклической замены $v_{+A} \rightleftharpoons v_{-A}, v_{+B} \rightleftharpoons v_{-B}$:

$$v = -v_{-A}v_{-B}(1-\eta_2)/[v_{-B}+C(v_{-A}-v_{-B})], \quad \eta_2 \equiv C\frac{v_{+B}}{v_{-B}}+(1-C)\frac{v_{+A}}{v_{-A}}. \quad (6)$$

Полагая $\eta_1 = 1$ и $\eta_2 = 1$, находим два значения C:

$$C_{1} = v_{+B}(v_{+A} - v_{-A}) / (v_{+A}v_{-B} - v_{-A}v_{+B}),$$

$$C_{2} = v_{-B}(v_{+A} - v_{-A}) / (v_{+A}v_{-B} - v_{-A}v_{+B}),$$
(7)

ири которых обращается в ноль соответственно скорость дрейфа вправо и влево. Поскольку $0 \leqslant C \leqslant 1$, то при $v_{+A} > v_{-A}$ и $v_{+B} > v_{-B}$ M дрейфует вправо, а при $v_{+A} < v_{-A}$ и $v_{+B} < v_{-B}$ — влево при любых C. Если же $v_{+A} > v_{-A}$ и $v_{+B} < v_{-B}$, то при $0 \leqslant C < C_1$ M дрейфует вправо, при $C_2 < C \leqslant 1$ — влево, а в области концентраций $C_1 \leqslant C \leqslant C_2$ отсутствует стационарный режим с отличной от нуля скоростью дрейфа.

В случае цепочки с полностью упорядоченной структурой, задаваемой периодическим повторением последовательности частиц $\beta_1\beta_2\dots\beta_r$, имеем r вероятностей сохранения $U_{\beta_i\beta_{i+1}\dots}$ и времен $\pmb{\tau}_{\beta_i\beta_{i+1}\dots},\ i=1,\dots,r$. Суммируя последние, находим τ и $v=1/\tau$ (5):

$$v = r \left[1 - \left(\frac{v_{-A}}{v_{+A}} \right)^{r(1-C)} \left(\frac{v_{-B}}{v_{+B}} \right)^{rC} \right] / \left[\sum_{i=1}^{r} \frac{1}{v_{+\beta_{i}}} + \sum_{i=1}^{r} \sum_{j=1}^{r-1} \frac{1}{v_{+\beta_{i+j}}} \prod_{k=0}^{j-1} \left(\frac{v_{-\beta_{i+k}}}{v_{+\beta_{i+k}}} \right) \right].$$
(8)

Здесь учтено, что среди r частиц (r — период структуры цепочки) имеется rC частиц B и r(1-C) частиц A. Согласно (8) независимо от r v=0 при $C=C_0$, где

$$C_0 = \ln \frac{v_{-A}}{v_{+A}} / \ln \frac{v_{-A}v_{+B}}{v_{+A}v_{-B}}.$$
 (9)

Выражения (5), (6) и (8) для скорости дрейфа проверялись путем моделирования на ЭЦВМ процесса блуждания частицы M (5). В началь-

Упорядоченная цепочка, (11)											
0,0001	0,3	0,9	1,3	1,5	1,75	2,0	2,5	3,0	4,0	5,0	
0,44	0,44	0,96	0,92	4,16	5,20	3,44	0,52	0,48	0,80	1,12	
24 810	17 022	14 148	5272	9582	-6004	-13212	-4124	-5210	-11634	-18700	
34 341	30 525	55 194	48 643	212 962	257 255	165 451	23 993	21 480	34 282	46 783	
0,722	0,558	0,256	0,108	0,045	-0,023	-0,080	-0,172	-0,243	-0,339	-0,400	
0,7194	0,5580	0,2607	0,1090	0,0464	-0,0214	-0,0793	-0,1718	-0,2414	-0,3374	-0,3992	

t — время блуждания. 2) В эксперименте, отмеченном звездочкой, частица M за 1,2·10 6 скачков повици.

ный момент времени частица M помещалась в некоторую позицию в цепочке. Определялся тип ближайших частиц справа и слева. Если, к примеру, слева находилась A, а справа B, то к общему времени процесса блуждания добавлялась величина $1/(v_{+B}+v_{-A})$. При указанной конфигурации вероятности скачка вправо и влево равны соответственно $v_{+B}/(v_{+B}+v_{-A})$ и $v_{-A}/(v_{+B}+v_{-A})$. С помощью датчика случайных чисел разыгрывалось смещение M на один шаг вправо или влево, и процесс повторялся. Скорость дрейфа определялась как отношение смещения частицы M из начального положения ко времени блуждания.

При моделировании изучалась одна неупорядоченная структура с фактической концентрацией C = 0.4900 и упорядоченная структура AABB с периодом r = 4. Определялась v для различных v_{-B} при $v_{+A} = v_{+B} = 1$ и $v_{-A} = 0.6$. В этих улсовиях, согласно (5) и (6), имеем соответственно

$$v = 0.6940 - 0.4900$$
v_{-в} при $v_{-B} \le 1.416$,

$$v = -(0.0900v_{-B} - 0.2940) / (0.5100v_{-B} + 0.2940) \text{ при } v_{-B} \geqslant 3.267,$$
(10)

а для структуры AABB, согласно (8),

$$v = (1 - 0.36v_{-B}^2)/(1.39 + 0.98v_{-B} + 0.55v_{-B}^2).$$
(11)

В табл. 1 приведены результаты моделирования и расчета по формулам (10) и (11). Согласие результатов может служить «экспериментальным» подтверждением правильности соотношений (5) — (8) *. В то же время из этих соотношений следует, что в области $C_1 \leqslant C \leqslant C_2$ в неупорядоченной цепочке отсутствует режим блужданий с отличной от нуля средней скоростью дрейфа. В связи с этим возникает вопрос о характере блужданий в этой области.

Вопрос об определении скорости дрейфа может быть решен с помощью функций распределения $W_n(t)$, $W_{n,h}(t)$ и т. д., характеризующих структуру цепочки в системе координат, связанной с частицей M, и имеющих следующий смысл: $W_n(t)$ — вероятность обнаружить в момент t частицу B в n-м относительно частицы M узле цепочки (узлам цепочки справа от M соответствуют $n=1,2,\ldots$, а слева $n=-1,-2,\ldots$); $W_{n,h}(t)$ — вероятность обнаружить частицы B одновременно в двух точках с координатами n и k относительно M. Аналогично можно определить и последующие функции распределения. Скорость дрейфа равна разности частот переско-ка M вправо и влево и выражается через $W_1(t)$ и $W_{-1}(t)$:

$$v(t) = v_{+A}[1 - W_1(t)] + v_{+B}W_1(t) - v_{-A}[1 - W_{-1}(t)] - v_{-B}W_{-1}(t).$$
 (12)

Функции распределения удовлетворяют бесконечной системе «зацепляющихся» уравнений. Так, для $W_n(t)$ имеем систему уравнений, содер-

^{*} Наблюдаемое в случае неупорядоченной структуры (табл. 1) систематическое расхождение при больших v_{-B} связано, по-видямому, с особенностями структуры исследованной цепочки (вместо бесконечной неупорядоченной цепочки изучалась упорядоченная, но с большим периодом r=4096).

жащих бинарные функции $W_{n,k}(t)$:

$$dW_{n}(t) / dt = v_{+A}(W_{n+1} - W_{n}) + (v_{+B} - v_{-A})(W_{1, n-1} - W_{1, n}) + +v_{-A}(W_{n-1} - W_{n}) + (v_{-B} - v_{-A})(W_{-1, n-1} - W_{-1, n}) n \neq 1 \text{ if } -1,$$
(13)
$$dW_{1}(t) / dt = v_{+A}W_{2} - v_{+B}W_{1} + (v_{+B} - v_{+A})W_{1, 2} + +v_{-B}W_{-1} - v_{-A}W_{1} - (v_{-B} - v_{-A})W_{-1, 1},$$
(14)

$$dW_{-1}(t) / dt = v_{+B}W_{1} - v_{+A}W_{-1} - (v_{+B} - v_{+A})W_{-1, 1} + v_{-A}W_{-2} - v_{-B}W_{-1} + (v_{-B} - v_{-A})W_{-2, -1}.$$

$$(14)$$

Аналогично можно записать уравнения для бинарной и последующих функций распределения. Так как, по предположению, при t=0 частица M помещается в случайный узел цепочки, то

$$W_n(0) = C, \quad W_{n,h}(0) = C^2, \dots$$
 (16)

Таким образом, в рассматриваемом подходе задача определения v(t) сводится к решению бесконечной системы уравнений для функций распределения. Соответствующая бесконечная система для предельных стационарных вероятностей $W_n(\infty)$, $W_{n,h}(\infty)$, ... при $C_1 \leqslant C \leqslant C_2$ имеет точное решение

$$W_n(\infty) = \begin{cases} C_1 & \text{при } n \leqslant -1, \\ C_2 & \text{при } n \geqslant 1, \end{cases} \quad W_{n, k}(\infty) = W_n(\infty) W_k(\infty), \dots, \tag{17}$$

которому по (12) соответствует $v(\infty)=0$. В работе (5) вопрос изучается в предположении отсутствия корреляции $(W_{n,\,h}(t)=W_n(t)W_h(t))$ и при конечных t. Получается, что при больших t частица M дрейфует вправо в случае $C_1 \leq C < C^*$ и влево в случае $C^* < C \leq C_2$ $(C^*={}^4/{}_2(C_1+C_2))$, причем скорость стремится к нулю при возрастании t. Остается желательным более полное математическое исследование характера блуждания при $C_1 \leq C \leq C_2$.

Отмеченная нестационарность процесса блуждания частицы M связана с тем, что в неупорядоченной цепочке имеются флуктуации структуры. Взаимодействие M с этими флуктуациями приводит к тому, что распределение компонентов относительно M, однородное при t=0 (см. (16)), с течением времени меняется и перестает быть однородным. При $t\to\infty$ устанавливается стационарное распределение, которое для $W_n(\infty)$ при $0\leqslant C < C_1$ имеет вид $\binom{3}{2}$

$$W_n(\infty) = \begin{cases} C & \text{при } n \leq -1, \\ C + C(1 - C) \left[\frac{v_{+A} - v_{-A} - v_{+B} + v_{-B}}{v_{+B} + C(v_{+A} - v_{+B})} \right] \eta_1^{n-1} & \text{при } n \geqslant 1, \end{cases}$$
(18)

и приводит к дрейфу частицы M вправо со скоростью (5); при $C_2 < C \leqslant 1$ устанавливается распределение, аналогичное (18), и дрейф влево со скоростью (6), а в интервале $C_1 \leqslant C \leqslant C_2$ происходит со временем приближение к распределению (17), и средняя скорость дрейфа стремится к нулю. В полностью упорядоченной цепочке флуктуации структуры отсутствуют, процесс блуждания носит обычный характер, подобный блужданиям в однокомпонентной цепочке, и скорость дрейфа обращается в нуль в одной точке $C = C_0$ (9). При неодномерных блужданиях, в отличие от одномерных, частица M имеет возможность «обойти» трудно проходимые флуктуации структуры. Поэтому скорость дрейфа будет обращаться в нуль не в области, а в точке.

Поступило 2 IV 1972

цитированная литература

⁴ А. А. Чернов, Биофизика, **12**, 2, 297 (1967). ² Д. Е. Темкин, ФТТ, **13**, 11, 3381 (1971). ³ D. Е. Темкін, J. Cryst. Growth., **5**, 193 (1969). ⁴ Д. Е. Темкин, Кристаллография, **14**, 3, 423 (1969). ⁵ Д. Е. Темкин, Кристаллография, **17**, 1, 77 (1972). ⁶ В. Феллер, Введение в теорию вероятностей и ее применения, **1**, М., 1967.