М. Т. МУСТАФАЕВА, В. А. КУЗОВКИН, В. А. СМИТ, А. В. СЕМЕНОВСКИЙ, В. Ф. КУЧЕРОВ

СТЕРЕОХИМИЯ ПРИСОЕДИНЕНИЯ КАРБОНИЙ-ИОННЫХ ЭЛЕКТРОФИЛОВ ПО ТРЕХЗАМЕЩЕННОЙ ДВОЙНОЙ СВЯЗИ

(Представлено академиком Б. А. Казанским 20 VII 1972)

Имеющиеся в литературе данные по стереохимии присоединския карбоний-ионных электрофилов крайне немногочислениы и в основном касаются стереохимии присоединения по дизамещенным двойным связям в реакции Принса (1). Разработанная нами недавно методика использования сильнополяризованных катионоидных комплексов как реагентов в реакциях электрофильного присоединения (2) позволила поставить задачу более широкого изучения стерического хода Ad_E -реакций с участием различных карбоний-ионных электрофилов.

В пастоящей работе нами изучена стереохимия присоединения алкоксиалкил- и ацилкатионоидов по трехзамещенной двойной связи. В качестве модельной реакции была выбрана реакция циклизации некоторых изопреноидных соединений — герапиевого эфира (I) и герапилацетона (II) и рассматривалась стереохимия присоединения по 2,3-двойной связи электрофила — катионоида X⁺ и нуклеофила — 6,7-двойной связи. Подобная модель позволяла независимо и в довольно широких пределах варыпровать природу электрофила и нуклеофила в изучаемой реакции и получить данные о ее стереохимии для практически не изученного случая — присоединения по трехзамещенной двойной связи.

Ранее нами была предпринята попытка изучить стереохимию присоединения по 2,3-связи на примере циклизации аналога II, содержащего в качестве «метки» этильную группу, вместо цис- или транс-метильной группы при C_2 (3). Было выяспено, что эта стадия реакции протекает примерно на 80% стереоспецифично, если инициатором является $CH_3OCH_2BF_4$, но использовать эту же модель для изучения реакции с другими катионоидными инициаторами не удалось. Более универсальными моделями оказались аналоги изопреноидов, содержащие в качестве метки CD_3 -группу вместо транс- CH_3 -группы при C_2 , поскольку в этом случае можно было использовать в реакции весь набор электрофилов, применяемых для циклизации «обычных» изопреноидов. Это позволило нам изучить стереохимию реакции присоединения по 2,3-связи в следующих реакциях *:

CD₃
COOCH₃

$$X^{+}Y^{-}$$
(I)
$$(III) \quad X = CH_3OCH_2, Y = SbF_6$$

$$(IV) \quad X = C_6H_5CO, Y = BF_4$$

$$(IV_a) X = (CH_3)_3CO, Y = BF_4$$

^{*} В случае I в реакции использовался индивидуальный транс-6,7-изомер I. В случае II в реакции использовалась смесь цис- и транс-6,7-изомеров, и образующаяся смесь цис- и транс-бициклических продуктов разделялась хроматографией (т.с.х. или г.ж.х.). Стереоспецифичность реакции по сочленению циклов при получении продуктов V—VIII (определенная в опытах по циклизации индивидуальных цис-6,7 и транс-6,7-изомеров недейтерированного II) составляет 85—90%.

(II)
$$\begin{array}{c} X^{+}Y^{-} \\ X \\ X \\ X \\ Y^{-} \\ X \\ X \\ Y^{-} \\ X \\ X \\ Y^{-} \\ Y^{-} \\ X \\ Y^{-} \\ Y^{-$$

Методика проведения реакции и идентификация образующихся продуктов описаны нами ранее (4,5).

Степень стереоспецифичности изучаемой реакции по связи 2,3 оценивалась по соотношению интенсивности сигналов геминальных метильных групп в спектрах п.м.р. продуктов III—VIII, поскольку было найдено (4, 5), что соответствующие сигналы в спектрах п.м.р. недейтерированных продуктов проявляются в виде двух 3H-синглетов в области 0,6—0,9 м.д. Полученные данные сведены в табл. 1.

Таблица 1

Вещество	Химические сдвиги сигна- лов геминальных СН ₃ -групп		Относительная интенсяв- ность сигналов*	
	CH ₃ (A)	CH ₃ (E)	CH ₃ (A)	CH3 (P)
III IV IVa V	$\begin{array}{c} 0,76 \\ 0,92 \\ 0,92 \\ 0,62 \end{array}$	0,93 $1,02$ $1,29$ $0,95$	60 50 40 75 75 88	40 50 60 25 (SbF ₆) 25 (BF ₄) 12 (THEC
VI	0,75	0,89	16	$84 (SbF_6)$
VIII	0,78 0,81	$^{0,91}_{0,90}$	17 16 83	83 (BF ₄) 84 17

^{*} Интенсивность определялась путем взвещивания вырезанных пиков и контролировалась также по данным интегрировация. Точность определения 10% (отн.). Суммарная интенсивность двух сигналов соответствовала наличию 3Н.

Как видно из этих данных, циклизация гераниевого эфира I приводит к образованию продуктов (III и IV), представляющих собой почти эквимолярные смеси эпимеров, различающихся конфигурацией CD_3 -группы при C_2 , т. е. реакция присоединения по связи 2,3 на этой модели протекает нестереоспецифично. В то же время циклизация II под действием тех же реагентов протекает в высокой степени стереоспецифично * по связи 2,3 и дает продукты (V и VI), в которых резко преобладает одип из возможных эпимеров по положению CD_3 -группы. Точно так же протекает циклизация II под действием CH_3COBF_4 и $n\text{-}CH_3C_6H_4COBF_4$ (VII и VIII).

Тот факт, что на стереохимии реакции мало сказывается природа катионоидного реагента (ср. III с IV или V с VI—VIII) и она резко меняется при переходе от I ко II (ср. III с V или IV с VI), показывает, что основным фактором, определяющим стереохимический ход присоединения пе 2,3-двойной связи, является природа нуклеофила — 6,7-двойной связи. Полученные данные можно объяснить, если принять, что первой стадией

^{*} Вследствие неполной специфичности реакции по связи 6,7 некоторая часть транс-бициклопродуктов V—VIII образуется за счет циклизации цис-6,7-изомера II (см. замечание на стр. 2), что несколько занижает истинную степень стереоспецифичности процесса по 2,3-связи.

в рассматриваемой реакции является образование интермедиата типа карбоний-иона A, конфигурация которого закреплена в основном за счет пространственных препятствий для поворота вокруг 2,3-связи, а также за счет электростатического взаимодействия свободных пар электронов кислорода в заместителе X с карбоний-иопным центром C_2 . Следующей стадией реакции является взаимодействие интермедиата A с нуклеофилом — 6,7-двойной связью, и для того чтобы реакция протекала стереоспецифично, необходимо, чтобы скорость этой стадии была больше, чем скорость превращения интермедиата A в A^+ (за счет вращения вокруг связи C_2 — C_3). Очевидно, что это условие выполняется в случае, когда нуклеофилом служит изолированная 6,7-двойная связь в II, и не выполняется, если нуклеофильность этой связи снижена за счет сопряжения с $COOCH_3$ -группой, как это имеет место в I.

На схеме, приведенной ниже, представлен стерический ход рассматриваемой реакции, причем принято, что циклизация осуществляется в кресловидной конформации ациклической молекулы. Поскольку стереоспецифическое присоединение по связи 2,3 с образованием циклической молекулы может протекать лишь как транс-присоединение, то преимущественным эпимером при циклизации II должны быть продукты с экваториальной конфигурацией CD₃-группы.

$$CD_{3} \xrightarrow{R} \xrightarrow{7} \xrightarrow{6} \qquad CD_{3} \xrightarrow{X} \xrightarrow{X}$$

$$(I) R = COOCH_{3}$$

$$(II) R = CH_{2}CH_{2}COCH_{3}$$

$$CD_{3} \xrightarrow{X} \xrightarrow{X}$$

$$CD_{3} \xrightarrow{X} \xrightarrow{X}$$

$$R$$

$$CD_{3} \xrightarrow{X} \xrightarrow{X}$$

Интересно сопоставить данные настоящей работы с полученными нами рапее данными (6, 7) о факторах, определяющих стереохимию присоединения по 6,7-двойной связи при образовании бициклической системы. В этой стадии реакции циклизации осуществляется внутримолекулярное присоединение по трехзамещенной двойной связи электрофила (карбоний-ионного центра при С₂) и пуклеофила (10,11-двойной связи). Было обнаружено, что довольно существенные изменения в природе электрофила не оказывают заметного влияния на стереохимию присоединения по 6,7-связи, но она резко изменяется при изменении природы нуклеофила. При этом стереоспецифический ход реакции наблюдается лишь в тех случаях, когда нуклеофилом является изолированная 10,11-двойная связь (фарнезилацетон (IX) (6)). Если же нуклеофильность этой связи снижена за счет наличия сопряженной —СООСН₃-группы (фарнезиловый эфир (X) (7)), то наблюдается сполна пестереоспецифическое протекание реакции по связи 6,7.

$$\begin{array}{c|c}
\hline
3 & 7 \\
6 & 11 \\
R & & R
\end{array}$$

 $\begin{array}{ll} IX: & R = CH_2CH_2COCH_3 \\ X: & R = COOCH_3 \end{array}$

Однотипность закономерностей, наблюдаемая для случая присоединения по 2,3- и 6,7-двойной связи, заставляет предположить, что в общем случае реакций присоединения карбоний-ионных электрофилов по двойным связям стереохимия процесса более всего зависит от природы нуклеофила

в этой реакции. Следует отметить, что в литературе имеются данные, указывающие на зависимость хода некоторых реакций электрофильного присоединения, например галоидирования, от природы нуклеофила (^s), однако этот вывод трудно было считать однозначным, ибо во всех сравниваемых случаях изменялась не только природа нуклеофила, но и природа электрофила.

Приведенная интерпретация полученных данных о стереохимии реакции присоединения карбоний-ионных электрофилов показывает, что стерический ход реакции должен также зависеть от факторов, закрепляющих стереохимию интермедиата A, в частности — от объема заместителя X. Это

предположение проверяется нами в настоящее время.

Получение исходных веществ I и II описано в (4). Все циклические продукты, за исключением VII, были ранее (4,5) получены при циклизации недейтерированных аналогов I и II, и идентификация дейтерированных продуктов III—VIII проводилась путем сравнения с заведомыми образцами (г.ж.х., спектры п.м.р., константы). Молскулярные веса всех продуктов III—VIII (масс-спектры) соответствовали паличию в них CD₃-группы. Спектры п.м.р. всех веществ, кроме IVa, спимались в растворе CCI_4 (IVa—в растворе C_5H_5N) на приборе JEOL-100; химические сдвиги (δ) даны в м.д. относительно ГМДС.

Получение VII. К охлажденному до -25° раствору 0,93 г n-CH $_3$ C $_6$ H $_4$ COCl в 1,2 мл CH $_3$ NO $_2$ прибавляли за 2 мин. раствор 0,2 г II и 0,6 г AgBF $_4$ в 3 мл CH $_3$ NO $_2$. Смесь перемешивали при этой температуре еще 5 мин. и обрабатывали охлажденной смесью водного раствора NaHCO $_3$ и эфира. После экстракции, сушки и удаления растворителя остаток хроматографировали па Al $_2$ O $_3$ (бензол: гексан 2:1). Из фракции с R_f 0,3 выделено 0,12 г VII, индивидуального по данным г.ж.х. (в условиях разделения с цис-A/B изомером) и идентичного образцу, получаемому при циклизации педейтерированного II.

Найдело % (для недейтерированного VII): С 80,93; Н 9,51 С 20,11 С 20,73; Н 20,03 С 20,73; Н 20,03

Спектр п.м.р. VII: 0,78 и 0,91 (два синглета, суммарная интенсивность 3H, соотношение интенсивностей 46:84; для недейтерированного образца VII — два 3H-синглета; геминальные CH_3 -группы), 1,15 (3H, синглет, ангулярная группа CH_3 —C—O), 4,60 (3H, уширенный синглет, CH_3 —C=C), 2,35 (3H, CH_3 —C4,3 (4H, мультиплет, C5,7,2—7,7 (4H, мультиплет, C6,C6,C7,2—1. Спектр п.м.р. VII отличается от ранее описанного спектра п.м.р. VI лишь наличием сигнала C1,4—Ar.

Институт органической химин им. Н. Д. Зелинского Академии паук СССР Москва

Поступило 18 VII 1972

цитированная литература

Р. Stapp, D. Weinberg, J. Org. Chem., 34, 3592 (1970); N. Le Bel, R. Liesemer, E. Mehmedbasich, J. Org. Chem., 28, 615 (1963). ² W. A. Smit, A. V. Semenovsky et al., Tetrahedron Letters, № 33, 3101 (1971). ³ И. Г. Мурсакулов, А. В. Семеновский и др., ДАН, 177, 1355 (1967). ⁴ М. З. Кример, В. А. Смит и др., Изв. АН СССР, сер. хим., 1968, 866. ⁵ В. А. Смит, М. З. Кример, А. В. Семеновский, Изв. АН СССР, сер. хим., 1967, 1573. ⁶ В. А. Смит, А. В. Семеновский и др., ДАН, 196, 849 (1966). ⁷ А. В. Семеновский, В. А. Смит, В. Ф. Кучеров, Изв. АН СССР, сер. хим., 1965, 1424; М. З. Кример, В. А. Смит и др., там же, 1968, 1352. ⁸ Н. С. Зефиров, Докторская диссертация, МГУ, 1966.