УДК 541.422:539.143:548.42.8

ФИЗИЧЕСКАЯ ХИМИЯ

Г. Л. БИТМАН, М. Е. ЭЛЯШБЕРГ, Н. П. МАКОВЕЕВА, Ю. З. КАРАСЕВ, Н. Н. ШАПЕТЬКО

ИССЛЕДОВАНИЕ САМОАССОЦИАЦИИ ГИДРОПЕРЕКИСИ ТРЕТИЧНОГО БУТИЛА В ЧЕТЫРЕХХЛОРИСТОМ УГЛЕРОДЕ МЕТОДАМИ И.-К. И Я. М. Р. СПЕКТРОСКОПИИ

(Представлено академиком Н. М. Эмануэлем 28 VI 1972)

Самоассоциация органических гидроперекисей изучена сравнительно мало (см. библиографию (¹)). Между тем такие данные необходимы для развития количественной теории реакционной сиособности гидроперекисей в различных химических процессах (²). Нами изучена методами и.-к. и я.м.р. спектроскопии самоассоциация гидроперекиси трет.-бутила (ГПТБ) в ССІ₄. Этот процесс рассматривался в (³-6), однако единое мнение о характере межмолекулярной ассоциации ГПТБ отсутствует.

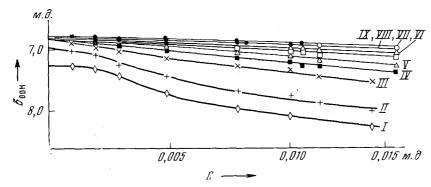


Рис. 1. Концентрационная зависимость $\delta_{\rm OOH}$ ГПТБ в CCl₄ (в области малых C) при различных температурах (°C): I——15, II——5, III—15, IV—25, V—35, VI—50, VII—60, VIII—70, IX—80

ГПТБ готовили по (7) с последующим многократным переосаждением в виде натриевой соли и фракционированием под уменьшенным давлением над ситами CaA 5 Å (т. кип. 34° при 16 мм рт. ст.; по данным г.ж.х. содержание 99,65%). ССІ₄ тщательно обезвоживали кипячением и перегонкой над P_2O_5 . Спектры я.м.р. снимали на спектрометре PC-60 (рабочая частота 60 Мгц). Положение сигнала протона ООН-группы ($\delta_{\rm OOH}$) определяли относительно ТМС. Ошибка при измерении $\delta_{\rm OOH}$ не превышала $\pm 0,02$ м.д. И.-к. спектры снимали на спектрометре UR-20 с призмой LiF в области 3700-3100 см⁻¹ Данные я.м.р. и и.-к. спектроскопии обрабатывали на ЭВМ.

Методом я.м.р. изучена концентрационная и температурная зависимости $\delta_{\rm OOH}$ в ССІ₄. В этом растворителе гидроперекись образует ассоциаты, которые разрушаются при разбавлении и повышении температуры, о чем свидетельствует характерное смещение сигнала в сильное поле. Оказалось, что химический сдвиг ООН-группы, экстраполированный на бесконечное разведение (δ_{∞}), равен 6,78 * м.д. (см. рис. 1) и отличается от такового

^{*} Следует заметить, что найденное нами значение δ_{∞} в CCI₄ не совпадает с $\delta_{\infty}=6.94$ м.д., приведенным в (¹), и значительно отличается от величины $\delta_{\rm M}=3.8$ м.д., полученной в (⁵).

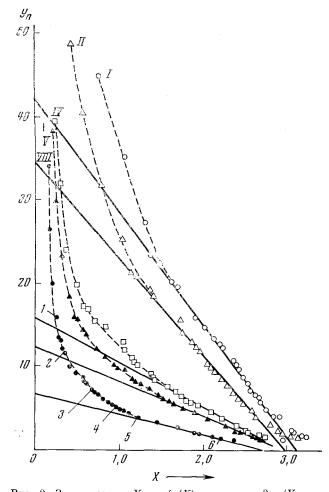


Рис. 2. Зависимость $Y_n = f_n(X)$ при n = 3. ($Y_n =$ $= {}^{n}V(\overline{\delta_{\text{ООП}} - \delta_{m}}) / C^{n-1}, X = \delta_{\text{ООП}} - \delta_{m}) I, II, IV, V, VIII — те же, что на рис. 1. <math>I - C_{\text{ГГТБ}} = 0,005 \text{ м.д.};$ 2 - 0.014; 3 - 0.042; 4 - 0.08; 5 - 0.145; 6 - 0.8

в алифатических углеводородах $(\delta_{\infty} =$ =6,65 м.д.). Различие в значениях δ_{∞} объясняется, видимо, слабой сольватацией протонов ООН-групп молекулами CCl₄ (8).

Экспериментальн ы е результаты обрабатывали по методу Липперта (°). Ввиду того, что значение б_∞ в ССІ₄ отражает суммарный вклад химических сдвигов мономера ГПТБ и сольватного комплекса (мономер ГПТБ . . . CCl₄), для расчетов по (°) в качестве химического сдвига мономера $\delta_{\rm M}$ использовали δ∞ в алифатических углеводородах. По пашему мнению, эта величина паиболее близка «истинному» значению δ_м ГПТБ. Анализ данных показал, что в интервале температур $-15 \div +70^{\circ}$ и широком диапазоне концентраций ГПТБ преобладает мономер 💳 равновесие ≠ тример (см. рис. 2. кривые при $t = \pm 15$. $+50 \text{ и } +60^{\circ} \text{ опущены}$). Полученное заключение согласуется с результатами наших исследова-

ний самоассоциации ГПТБ в алифатических углеводородах и выводами

работ $\binom{1}{3}$, но не совпадает с оценками, найденными в $\binom{5}{3}$.

Отклонение точек от прямой ${Y}_n=f_n(X)$ при n=3 в области малых концентраций ГПТБ обусловлено как постепенным смещением равновссия в сторону мономер ≠ димер, так и увеличением вклада химического сдвига сольватного комплекса (мономер ГПТБ . . . CCl4) в величину боон. В области C > 0.5 м.д. равновесие, по-видимому, смещается в сторону ассоциатов с n > 3.

Вычисленные значения термодинамических параметров равновесия мономер ≠ тример $(-\Delta H_3 = 11.8 \text{ ккал/моль}, -\Delta S_3 = 27.4 \text{ кал/моль} \cdot \text{град}*)$ совпадают с найденными нами ранее величинами (12,0 и 26,0 соответственно) для самоассоциации ГПТБ в алифатических углеводородах.

Методом и.-к. спектроскопии самоассоциация ГПТБ в ССІ₄ была исследована в пределах концентраций от 0,002 до 1,2 мол/л при 30°. В области $3700-3100~{
m cm^{-1}}$ в и.-к. спектрах разбавленных растворов (0,008 \leqslant C \leqslant $\leqslant 0.098$ мол/л при $5.0 \geqslant d \geqslant 0.4$ см) наблюдаются две полосы. Узкая пн-

^{*} Точность определения $\Delta H=\pm 0.5$ ккал/моль, $\Delta S=\pm 1.0$ кал/моль град.

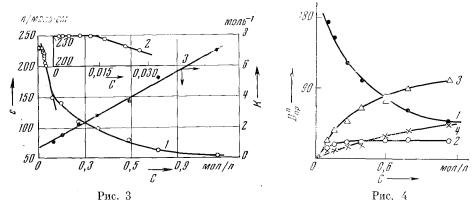


Рис. 3. Зависимость ε_m мономера (1,2) и постояпной ассоциации K (3) от копцентрации ГПТБ. Здесь $K=(C-X_j)$ / $2X_j^2,~X_j$ — концентрация мономеров, C— введенная концентрация $(\varepsilon_m,(3,10))$

Рис. 4. Концентрационная зависимость $D_{\pi p}{}^n$ при $n=1\div 4$ соответственно

тенсивная с максимумом при $3559 \,\mathrm{cm^{-1}}$ относится к колебаниям «свободной» ОН-связи, а широкая полоса при $3450 \,\mathrm{cm^{-1}}$ — к колебаниям ассоциированных ООН-групп. С ростом концентрации (выше $0.1 \,\mathrm{mon/n}$) максимум (\mathbf{v}_m) и центр тяжести $(\mathbf{v}_{\mathrm{n,r}})$ последней полосы постепенно смещаются в низкочастотную область более чем на $40 \,\mathrm{cm^{-1}}$. При этом интегральная интенсивность полосы A увеличивается почти на $20 \,\%$, хотя форма ее контура практически не меняется.

Концентрационная зависимость кажущегося коэффициента поглощения в максимуме мономера ($\varepsilon = (\ln T_{\circ}/T)/Cd$) приведена на рис. 3, откуда видно, что при C < 0.01 мол/л равновесие ассоциации почти полностью сдвигается в сторону образования мономеров. Анализ зависимости $\varepsilon = \varepsilon(C)$ в рамках модели (10) показывает, что повышение C от 0.01 до 0.1 мол/л сопровождается сдвигом равновесия в сторону мономер \rightleftharpoons димер. В области C > 0.1 мол/л преобладает равновесие мономер \rightleftharpoons тример (см. рис. 3), но не исключено присутствие других ассоциатов. Эти выводы внолпе коррелируют с данными я.м.р.

Согласно (11), в и.-к. спектрах растворов веществ, способных к самоассоциации, каждый тип ассоциатов имеет свою характерную частоту (для спиртов см. (10, 12)). Поэтому следовало ожидать, что сложный характер равновесия должен отразиться на и.-к. спектрах растворов ГПТБ в ССІ₄. Однако во всех изученных случаях в интервале 3460-3200 см⁻¹ наблюдалась одна полоса, не имеющая тонкой структуры. Этот факт может быть объяснен двояко: либо в растворах присутствуют ассоциаты лишь одноготипа, либо различным типам ассоциатов соответствуют близко расположенные полосы. Наши данные позволяют сделать выбор в пользу второго объяснения (см. выше). Кроме того, монотонное изменение значений v_m и $v_{n,\tau}$ для полосы ассоциированных ООН-групп с ростом концентрации скорее всего связано с непрерывным изменением вкладов полос различных ассоциатов в суммарный контур. Заметим также, что наличие одной полосы в области поглощения ассоциированных ООН-групп, по-видимому, вообще характерно для гидроперекисей (ср. спектры в (1, 3, 5)).

Хотя разделение контура с одним максимумом и без особых точек на составляющие заведомо неоднозначно (13), мы тем не менее сделали попытку построить с помощью ЭВМ математическую модель поглощения в интервале частот 3700—3100 см⁻¹. Обоснованность подобной полытки вытекает из тех качественно новых возможностей, которые дают одновременное использование данных и.-к. и я.м.р. спектроскопии.

Предполагалось, что наблюдаемый контур есть результат наложения 4 полос лорентповой формы, каждая из которых обусловлена поглошением одного из n-меров ($n=1\div 4$, где n=4 соответствует тетрамерам и более высоким полимерам). Начальные приближения параметров этих полос $(v_m^n, D_m^n, \Delta v_{i_n}^n)$ определены следующим образом. Значения v_m , $\varepsilon_m, \Delta v_{i_n}$ для n=1 находили по полосе мономера в предельно разбавленных растворах, а для n=2 в качестве начальных приближений взяты параметры полосы ассоциата в спектрах растворов с C = 0.01 - 0.1 мод/д (по нашим данным, в этом интервале концентраций преобладает равновесие мономер 辛 \rightleftharpoons димер). Величины v_m^3 и $\Delta v_{l_a}^3$ оценены из и.-к. спектров растворов ГПТБ при C>0.7 мол/л. Основанием для этого послужили главным образом данные я.м.р., из которых следует, что в подобных растворах преимущественным типом ассоциатов являются тримеры. Значения v_m^4 и Δv_b^4 выбраны в соответствии с v_m и Δv_b полосы полимеров триметилкарбинола (10). На надичие такого поглошения в и.-к. спектрах ГПТБ указывает заметная асимметрия низкочастотного крыла полосы ассопиатов при C >> 0.3 мол/л. Оптические плотности в максимумах всех модельных полос задавали в соответствии с экспериментальным контуром.

В результате машинного разделения были определены следующие значения \mathbf{v}_m^n и $\Delta \mathbf{v}_{v_n}^n$ (см⁻¹): для n=1 3559 ± 1 и $\tilde{2}2$ ± 1; для n=2 ± 2 и 62 ± 5 ; для n = 3 3415 ± 2 и 124 ± 8 ; для n = 4 3360 ± 15 и 196 ± 20 . Для всех изученных концентраций вычислялись также «приведенные» оптические плотности $D_{{
m пp}}{}^n=D_m{}^n/Cd$ $(n=1\div 4)$ в максимумах модельных полос. Их зависимость от C представлена на рис. 4. Видно, что с увеличением C значения $D_{\pi p}^{\ n}$ возрастают, но при C>0.1 выполняются неравенства $D_{\pi p}^{\ 3}>D_{\pi p}^{\ 2}$ и $D_{\pi p}^{\ 3}>D_{\pi p}^{\ 4}$. Полученные результаты, по аналогии с (14), можно интерпретировать как указание на преобладание вклада тримеров в равновесие ассоциации ГПТБ.

Таким образом, самоассоциация ГПТБ в ССІ, представляет собой сложный процесс, в котором участвуют одновременно мономеры, димеры, тримеры и полимеры гидроперекиси, но равновесие мономер ≠ тример преобдадает в значительном пианазоне конпентраций и температур. Очевилно. что эти результаты нельзя не учитывать при структурно-кинетическом анализе механизмов реакций с участием ГПТБ (в частности, в тех случаях, когда предподагается присутствие лишь димерных ассоциатов (15)).

Научно-исследовательский институт синтетических спиртов и органических продуктов Физико-химический институт им, Л. Я. Карпова

Поступило 26 VI 1972

38, 2085 (1964).