УДК 541.49 *ХИМИЯ*

В. И. НЕФЕДОВ, А. И. ГРИГОРЬЕВ, Н. Я. ТУРОВА, Я. В. САЛЫНЬ

ИССЛЕДОВАНИЕ МЕТИЛАТОВ, ФОРМИАТОВ И АЦЕТАТОВ Ва, Sr, Ca, Mg И Ве МЕТОДАМИ КОЛЕБАТЕЛЬНОЙ И РЕНТГЕНОЭЛЕКТРОННОЙ СПЕКТРОСКОПИИ

(Представлено академиком А. В. Новоселовой 17 VII 1972)

При исследовании и.-к. спектров поглощения метилатов и формиатов Ва, Sr, Ca, Mg и Ве был установлен закономерный рост силовой постоянной связи C-H (K_{CH}) в этих рядах (1 , 2). Предполагалось, что это явление обусловлено главным образом индукционным эффектом в цепи: $\mathbf{M} \leftarrow |\mathbf{O} - \mathbf{C} - \mathbf{H}$. Поскольку метод рентгеноэлектронной спектроскопии позволяет с достаточно большой точностью измерить энергию внутренних электронных уровней атомов, которая изменяется симбатно с эффективными зарядами этих атомов (3), представлялось интересным сопоставить данные методов колебательной и рентгеноэлектронной спектроскопии, относящиеся к метилатам, формиатам, а также ацетатам указанной группы

Рептгеноэлектронные спектры C1s и O1s записывались на спектрометре VIEE-1s. Методика съемки описана в работе (4). Образцы метилатов готовились в сухом боксе. Для энергии C1s-линии от углеводородного слоя принято значение 285,3 зв. Результаты измерений представлены в табл. 1.

металлов.

Таблица 1 Эцергия линий *Е* (эв)

Металя	Лиганд					
	OCH_3		оосн		OOCCH3	
	O1s	C1s *	G1s	C1s	O1s	C1s (карб.)
Ba Sr Ca Mg Be	531,5 531,7 531,9 532,1 532,9	286,2 286,3 286,5 286,6 286,6	532,0 532,3 532,5 532,8 533,4	288,7 288,9 289,1 289,5 289,6	531,8 532,0 532,4 532,7 532,8 **	289,2 289,3 289,5 289,5 289,6 **

^{*} Вследствие близости значений C1s-уровня в спектрах метилатов и углеводородного слоя точность результатов, приведенных в этом столбце, несколько шиже общей точности измерений (0.1-0.12) вы).

** Данные получены для $Be_4O(OOCCH_3)$.

Из данных табл. 1 видно, что энергии C1s и O1s монотонно возрастают в исследованных рядах соединений от Ва до Ве. Это соответствует, как и можно было предполагать, росту ковалентности связей металл — кислород в этом направлении. На рис. 1 представлены изменения энергий уровней

в этом направлении. На рис. 1 представлены изменения энергий уровней O1s в рядах в зависимости от первых ионизационных потенциалов металлов. Анализ рис. 1 показывает, что эти изменения при переходе от Ва к Ве существенны (значительно превосходят ошибку эксперимента), монотонны, имеют одинаковый знак для различных рядов и происходят по законам, близким к линейной зависимости. Эта очевидная простота в измене-

нии E O1s связана, по-видимому, прежде всего с тем, что при образовании связей рассматриваемыми элементами II группы не проявляют себя d-подуровни, в результате чего ковалентная составляющая связей металл—кислород по всему ряду соединений имеет осевую симметрию, т. е. носит характер только σ -связей.

Представленные на рис. 2 зависимости показывают, что $K_{\text{сн}}$ в рядат формиатов и метилатов Ba-Be монотонно возрастают с уменьшением

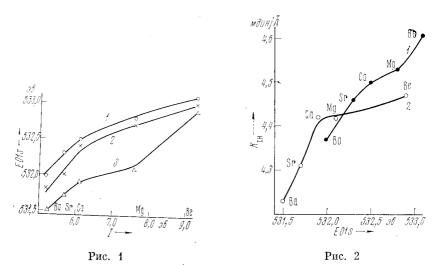


Рис. 1. Зависимость между энергией 1*s*-уровня кислорода (EO1s) и первым ионизационным потенциалом металла I в рядах формиатов (I), ацетатов (I) и метилатов (I) и

Рис. 2. Зависимость между силовой постоянной связи с С—Н $(K_{\rm CII})$ и энергией 1s-vровия кислорода (EO1s) в рядах формиатов (I) и метилатов (2) II группы

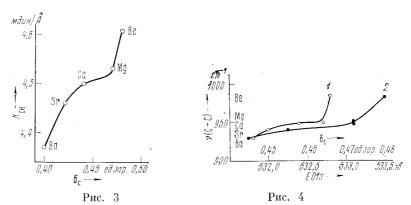


Рис. 3. Зависимость между силовой постоянной связи С—H и эффективным зарядом углерода δ_C в ряду формиатов II группы

Рис. 4. Зависимость между частотой нормального колебания преимущественно связи С—С ν (СС) и эпергией 1s-уровпя кислорода (1) или величиной эффективного заряда на карбоксильном углероде (2)

эффективного отрицательного заряда на атомах кислорода. Данные для энергий C1s-уровней метилатов и формиатов свидетельствуют о том, что этому росту соответствует закономерный рост эффективного заряда на атомах углерода (табл. 1). Графически зависимость между эффективным зарядом на углероде $\delta_{\rm C}$ и $K_{\rm CH}$ в ряду фермиатов показапа на рис. 3. Для оценки величин эффективных зарядов на углероде была использована гра-

дупровочная кривая из работы (5), где проведена корреляция сдвигов с за-рядами, рассчитанными методами п.п.д.п./2p для ионных соединений.

Из приведенных данных вытекает, что индукционный эффект является, очевидно, главным фактором, влияющим на силовую постоянную связи С—Н. С другой стороны, силовая постоянная этой связи (или частота валентного колебания v(CH)) может быть поэтому использована в рассматриваемых системах для сравнительной оценки величин эффективных зарядов на кислородах и, следовательно, степени ковалентности связей металл — кислород.

На приведенных рисунках все кривые имеют более или менее заметный перегиб между Са и Mg. Это явление связано, вероятно, с существенной перестройкой системы молекулярных орбиталей лиганда, которая происходит вследствие значительного повышения ковалентности связей металл—

кислород при переходе от Са к Мд.

В работе (6) было установлено также наличие закономерного возрастания частоты валентного колебания связи углерод — углерод ν (CC) в ряду ацетатов Ва—Ве. К сожалению, достаточно точный расчет силовых постоянных связей С—С для этих соединений невозможен. Для установления чисто эмпирической зависимости между значением частот ν (CC) и степенью ковалентности связи металл — кислород в ацетатах мы все же считаем целесообразным рассмотреть кривые на рис. 4, приблизительно отражающие связь между E O1s и δ_c , с одной стороны, и K_{cc} — с другой. Основанием для такого рассмотрения является то обстоятельство, что в случае ряда различных по составу и строению ацетатов бериллия (соединений с наиболее ковалентными связями металл — кислород) частота ν (CC) изменяется лишь в пределах 970—985 см⁻¹ (7), в то время как при переходе от ацетата бария к ацетату бериллия частота изменяется от 929 до 984 см⁻¹.

Как следует из рис. 4, частота v(CC) монотонно возрастает в исследованном ряду ацетатов с изменением эффективного отрицательного заряда на кислородах и ростом эффективного заряда на углероде. Заметим, что общий вид кривых весьма напоминает вид соответствующих кривых фор-

миатов (см. рис. 2 и 3).

Рассчитанные из дапных табл. 1 значения изменений эффективных зарядов на карбоксильном углероде $\Delta \delta_{\rm C}$ при переходе от существенно ковалентных формиатов и ацетатов бериллия к ионным формиатам и ацетатам бария ноказывают, что в случае формиатов эта величина (-0.08) приблизительно в два раза превосходит соответствующую величину для ацетатов (-0.04). Эти результаты хорошо согласуются с данными работы (5), согласно которым при переходе от HCOOH к HCOONH $_4$ $\Delta EC1s$ составляет -1.4 эв, а при переходе от CH $_3$ COOH к CH $_3$ COONa эта величина составляет всего лишь -0.5 эв. Полученные результаты можно понять, если учесть, что поляризуемость связи C—C существенно больше, чем связи C—H (8). Поэтому в случае ацетатного пона уменьшение эффективного заряда на карбоксильном углероде полнее компенсируется за счет смещения электропов соседней связи, чем в случае формиатного пона.

Московский государственный университет **и**м. М. В. Ломоносова

Поступило 29 VI 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. И. Григорьев, Н. Я. Турова, ДАН, 162, 98 (1965). ² А. И. Григорьев, ДАН, 171, 136 (1966). ³ К. Siegbahn, ESCA Applied to Free Molecules, Amsterdam, 1969. ⁴ В. И. Нефедов, А. И. Григорьев, М. А. Порай-Кошин, ДАН, 204, 146 (1972). ⁵ Ü. Gelius et al., Phys. Scripta, 2, 70 (1970). ⁶ А. И. Григорьев, ЖНХ, 8, 802 (1963). ⁷ В. А. Сипачев, А. И. Григорьев, ЖНХ, 17, 335 (1972). ⁸ К. К. Ингольд, Механизм реакций и строение органических соединений, ИЛ, 1959, стр. 59, 112.