УДК 513.82+511

MATEMATUKA

с. с. рышков

О ПРИВЕДЕНИИ ПОЛОЖИТЕЛЬНЫХ КВАДРАТИЧНЫХ ФОРМ ОТ *п* ПЕРЕМЕННЫХ ПО ЭРМИТУ, ПО МИНКОВСКОМУ И ПО ВЕНКОВУ

(Представлено академиком И. М. Виноградовым 31 III 1972)

 1^6 . В 1850 г. Эрмит (1), см. также (2, 3), предложил способ приведения положительных квадратичных форм от n переменных. Этому приведению, см., например, (3), в пространстве коэффициентов соответствует некоторая область \mathcal{H}^* — область Эрмита. Минковский (4, 5) в 1903 г. доказал, что область \mathcal{H}^* есть бесконечная выпуклая пирамида с конечным числом плоских граней и вершиной в начале координат (бесконечный конус над ограниченным конечногранным выпуклым многогранником). Для доказательства Минковский построил свою область \mathcal{M}^* , являющуюся замыканием области \mathcal{H}^* относительно конуса положительности. В 1940 г. Б. А. Венков (6) дал метод построения при n > 2 бесконеч-

В 1940 г. Б. А. Венков (6) дал метод построения при n > 2 бесконечного числа таких попарно неэквивалентных конечногранных пирамид приведения \mathcal{V}_{Φ} . Параметром, от которого зависит область Венкова, является произвольная положительная квадратичная форма ϕ от n переменных.

Естественно встает вопрос, не есть ли область Минковского частный случай области приведения Венкова. Как сообщили автору Б. Н. Делоне и А. В. Малышев, этот вопрос интересовал и самого Б. А. Венкова. Кроме того, Ван-дер-Варден (2). стр. 267, заметил, что вопрос о полном совпадении областей \mathcal{H}^{\bullet} и \mathcal{M}^{\bullet} , т. е. о замкнутости \mathcal{H}^{\bullet} , при n > 2 не был решен.

Автору в (3) удалось показать, что вопросы этп тесно связаны между собой, а именно, что область \mathcal{H}^* (область \mathcal{H}) полностью совпадает с областью \mathcal{M}^* (областью \mathcal{M}) тогда и только тогда, когда область \mathcal{M} совпадает с областью \mathcal{V} . Здесь через \mathcal{M} и \mathcal{H} обозначены (3) симметризованные групной куба области \mathcal{M}^* и \mathcal{H}^* соответственно, а через \mathcal{V} обозначена область \mathcal{V}_{φ} при $\varphi = x_1^2 + x_2^2 + \ldots + x_n^2$. Было показано, что эти совпадения имеют место при $n \leq 5$ и не имеют места при $n \geq 11$. При n = 6, 7, 8, 9, 10 этот вопрос оставался открытым. В той же работе автора было показано, что геометрический смысл приведения по Венкову в область \mathcal{V} есть выбор основного репера заданной решетки, имеющего наименьшую сумму квадратов длин векторов. В дальнейшем, для краткости, мы будем именовать приведением по Венкову именно этот частный случай, а приведением по Эрмиту и по Минковскому—соответственно приведение в область \mathcal{H} или \mathcal{M} .

12 III 1972 г. автор получил от проф. Барнса (Е. S. Barnes) письмо, в котором было указано на опечатку в работе (3), а именно, в форме из теоремы 2 коэффициент при x_{10} равен $^2/_3$, а не $^4/_3$. В том же письме проф. Барнс сообщил автору две квадратичные формы f_9 и f_{10} от 9 и 10 переменных соответственно, приведенных по Минковскому, но не приведенных по Эрмиту.

С другой стороны, автору стал известен результат П. П. Таммелы (7), в силу которого при n=6 области \mathcal{H} , \mathcal{M} и \mathcal{V} совнадают. Таким образом, вопрос оставался неясным только для n=7 и для n=8.

Все это побудило автора вновь вернуться к рассматриваемому вопросу и предложить следующие теоремы, см. п. 2° и 3°.

 2° . Теорема 1. Области приведения \mathcal{H} и \mathcal{M} (а также области приведения \mathcal{H}^{*} и \mathcal{M}^{*}) полностью совпадают при каждом $n \leq 6$ и различны для любого $n \geq 7$.

Теорема 2. Области приведения V и M совпадают при каждом $n \le 6$ и различны (являются существенно различными многогранными пирамидами) при $n \ge 7$.

Первые части этих теорем фактически доказаны в работах (³, ⁷). Вторая часть любой из этих двух теорем следует из второй части другой теоремы в силу теоремы 1 из (³, ⁸), однако они обе доказываются и без использования цитированной теоремы, являясь соответственно следствием таких двух лемм.

Лемма 1. Положительная квадратичная форма

$$\alpha (x_{1}^{2} + x_{2}^{2} + x_{3}^{2} + x_{4}^{2} + x_{5}^{2}) + (1 - a) (x_{1} + x_{2} + x_{3} + x_{4} + x_{5})^{2} + x_{6}^{2} + + (1^{7}/_{6} - 2a) x_{7}^{2} + (1^{9}/_{6} - \frac{5}{2}a) (x_{1} + x_{2} + x_{3} + x_{4}) x_{7} + + (1^{9}/_{6} - \frac{8}{3}a) x_{5}x_{7} + x_{6}x_{7} + 7x_{8}^{2} + 7x_{9}^{2} + \dots + 7x_{n}^{2}, \frac{13}{15} < a < \frac{11}{12},$$
 (1)

приведена по Минковскому, но не приведена по Эрмиту.

Лемма 2. Положительная квадратичная форма

$$^{7/8}(x_{1}^{2} + x_{2}^{2} + x_{3}^{2} + x_{4}^{2} + x_{5}^{2}) + ^{1/8}(x_{1} + x_{2} + x_{3} + x_{4} + x_{5})^{2} + ^{2}_{6} + + (^{13}/_{12} + 0.0011 - \gamma + \gamma^{2})x_{7}^{2} + ^{47}/_{48}(x_{1} + x_{2} + x_{3} + x_{4})x_{7} + ^{5}/_{6}x_{5}x_{6} + + (1 - 2\gamma)x_{6}x_{7} + 7x_{8}^{2} + 7x_{9}^{2} + \dots + 7x_{n}^{2} + \psi$$
(2)

приведена по Минковскому и по Эрмиту, но не приведена по Венкову. Напротив, положительная квадратичная форма

$${}^{7/8}(x_{1}^{2} + x_{2}^{2} + x_{3}^{2} + x_{4}^{2} + x_{5}^{2}) + {}^{1/8}(x_{1} + x_{2} + x_{3} + x_{4} + x_{5})^{2} +$$

$$+ (1,0044 + 4\gamma^{2}) x_{6}^{2} + (1,0099 - 3\gamma + 9\gamma^{2}) x_{7}^{2} - {}^{19/24}(x_{1} + x_{2} + x_{3} + x_{4}) x_{6} +$$

$$+ {}^{2/3}x_{5}x_{6} - {}^{1/16}(x_{1} + x_{2} + x_{3} + x_{4}) x_{7} - {}^{1/2}x_{5}x_{7} + ({}^{3}x_{4} + 0,0132 -$$

$$- 4\gamma + 12\gamma^{2}) x_{6}x_{7} + 7x_{8}^{2} + 7x_{9}^{2} + \dots + 7x_{n}^{2} + \psi.$$
(3)

приведена по Венкову, но не приведена ни по Эрмиту, ни по Минковскому. (В формулах (2) и (3) через ψ обозначена произвольная квадратичная форма от п переменных с достаточно малыми коэффициентами, а $\gamma = 10^{-10}$.)

Очевидно, что эти леммы достаточно доказать лишь при n=7. Делается это при помощи следующих геометрических конструкций. Рассмотрим репер $A\left(a_1,a_2,\ldots,a_7\right)$ с метрической квадратичной формой

$$a(x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2) + (1 - \alpha)(x_1 + x_2 + x_3 + x_4 + x_5)^2 + x_6^2 + \beta x_7^2, \quad (4)$$

где $^{13}/_{15} < \alpha < ^{11}/_{12}$ и $\beta = 1$. Зададим далее векторы нового репера $E_{\gamma}(e_1, e_2, \ldots, e_7)$ следующим образом:

$$e_1 = a_1, \quad e_2 = a_2, \ldots, \quad e_6 = a_6, \quad e_7 = \frac{1}{3} (a_1 + a_2 + a_3 + a_4) + \frac{1}{4} a_5 + (\frac{1}{2} - \gamma) a_6 + \frac{1}{12} \sqrt{11} a_7.$$

Репер E_0 имеет своей метрической формой квадратичную форму (1), в которой положено n=7. Обозначим через Γ решетку, построенную на репере E_0 , и найдем все ее векторы минимальной длины. Для этого заметим, во-первых, что на решетке Γ' , построенной на векторах e_1, e_2, \ldots, e_6 , только векторы $\pm e_1, \pm e_2, \ldots, \pm e_6$ имеют длину 1, остальные же имеют длину по крайней мере $2\alpha > 2^{26}/_{15}$.

Таким образом, меньший вектор, исходящий из начала координат, если такой есть, должен кончаться в одном из слоев решетки Γ , параллельных подпространству, несущему решетку Γ' . В силу того, что $\frac{1}{12}\sqrt{11} > \frac{1}{4}$, этот слой не может быть далее чем третьим.

Рассмотрим первый слой. Все векторы, идущие в него из начала, имеют вид

$$(\frac{1}{3} + m_1)a_1 + (\frac{1}{3} + m_2)a_2 + (\frac{1}{3} + m_3)a_3 + (\frac{1}{3} + m_4)a_4 + (\frac{1}{4} + m_5)a_5 + (\frac{1}{2} + m_6)a_6 + \frac{1}{12}\sqrt{11}a_7 = e_7 + a',$$

где m_1, m_2, \ldots, m_6 — целые числа, т. е. $a' \in \Gamma'$. Подстановкой координат этого вектора (относительно репера A) в форму (4) убеждаемся, что наименьшая длина его получается при a' = 0 (или $a' = -a_6$) и равна $a' = -a_6$ и равна a' = -

Рассмотрим второй слой. Соответствующие векторы удобно записать в виде

$$(-1/_3 + m_1) a_1 + (-1/_3 + m_2) a_2 + (-1/_3 + m_3) a_3 + (-1/_3 + m_4) a_4 + (1/_2 + m_5) a_5 + m_6 a_6 + 2/_{12} \sqrt{11} a_7 = e_6^* + a',$$

где $e_6^* = 2e_7 - e_1 - e_2 - e_3 - e_4 - e_6$ и $a' \in \Gamma'$. Здесь мы также, подставляя координаты в форму (4), убеждаемся, что вектор e_6^* кратчайший из слоя и его длина равна 1.

Точно так же убеждаемся, что из векторов, идущих в третий слой, кратчайшим является вектор

$$e_7^*=-{}^1/_4a_5+{}^1/_2a_6+{}^3/_{12}\sqrt{11}$$
 $a_7=3e_7-e_1-e_2-e_3-e_4-e_5-e_6$ и что длина его также равна 1.

Заметим теперь, что репер E_0 приведен по Минковскому, но в то же время в решетке Γ есть основной репер $E_0^*(e_1, e_2, e_3, e_4, e_5, e_6^*, e_7^*)$ с меньшей суммой квадратов длин векторов и с меньшим седьмым вектором, т. е. репер E_0 и тем самым форма (1), для n=7, приведены по Минковскому, но не приведены ни по Венкову, ни по Эрмиту. Отметим, что репер E_0^* приведен всеми тремя способами.

Формы (2) и (3) из второй леммы при n=7—это формы реперов E_{γ} и E_{γ}^{*} , где $\alpha={}^{7}/{}_{8}$, $\beta=1{,}00144$ и $\gamma=10^{-10}$. Такой выбор параметров α , β и γ позволяет нужным образом «огрубить» нашу конструкцию и в силу огрубления добавить произвольную форму ψ . Разумеется, огрубленная конструкция, различая приведения по Венкову и по Минковскому, перестает различать приведения по Эрмиту и по Минковскому.

 3° . Здесь мы обозначим через $\mathscr{V}_{\phi}^{\bullet}$ область Венкова \mathscr{V}_{ϕ} при $\phi = a_1 a_2 \dots a_{n-1} x_1^2 + a_2 \dots a_{n-1} x_2^2 + \dots + a_{n-1} x_{n-1}^2 + x_n^2$, где $0 < a_i < 1, i = 1, 2, \dots$..., n-1.

Теорема 3. Область приведения \mathcal{H}^* есть предел областей \mathcal{V}_{φ}^* при одновременном стремлении к нулю всех чисел a_i

В некотором смысле это заметил еще Минковский, «перефразпруя» (4) определение Эрмита из (1).

Теорема 4. При каждом $n \leq 6$ все области \mathcal{V}_{φ}^* совпадают между собой и с областью $\mathcal{M}^* = \mathcal{H}^*$.

Этот факт следует из того, что 2^n -кратная область приведения \mathcal{V}_{ϕ}^* при любом n есть часть множества \mathcal{L}^* , см. (3), а в силу результатов (3,7), при $n \leq 6$ и множество \mathcal{L}^* есть 2^n -кратная область приведения.

Теорема 5. При любом $n \ge 7$ области \mathcal{V}_{ϕ}^* уже не обязательно совпадают между собой и каждая из них отличается от области \mathcal{M}^* .

Это можно доказать, подбирая должным образом в конструкциях п. 2° числа β и γ .

Математический институт им. В. А. Стеклова Академии наук СССР Поступило 21 III 1972

Москва ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Ch. Hermite, J. reine. u. angew. Math., 40, 302 (1850). ² B. L. van der Waorden, Acta Math., 96, № 3—4 (1956). ³ C. C. Рышков, ДАН, 193, № 5, 1028 (1971). ⁴ H. Minkowski, Ges. Abh., 1, Leipzig — Berlin, 1911, S. 153. ⁵ H. Minkowski, Ges. Abh., 2, Leipzig — Berlin, 1911, S. 53. ⁶ Б. А. Венков, Изв. АН СССР, сер. матем., 4, № 1, 37 (1940). ⁷ П. П. Таммела, Записки научных семинаров ЛОМИ (в печати).