УДК 517.946

MATEMATUKA

Э. А. ЯРВ

АСИМПТОТИЧЕСКИЕ СВОЙСТВА ФУНКЦИОНАЛОВ С ЧЕБЫШЕВСКИМ ОБСЛУЖИВАНИЕМ

(Представлено академиком С. Л. Соболевым 2 И 1972)

1. Имеем «базисный» отрезок-функционал $F_{n-1} = (\mu_i)_0^{n-1}$. Будем его продолжать, выбирая каждый последующий параметр лежащим вне или на границе критического интервала. Получим $(\mu_i)_0^{\infty}$

Теорема 1. Последовательность $(\mu_i)_0^{\infty}$, обладающая тем свойством, что каждый ее частичный отрезок-функционал $(\mu_i)_0^p$, $p \geqslant n$, где n фиксировано, имеет своим экстремальным $+T_p(x) = \cos p \arccos (2x-1)$ или $T_p(x)$, не является моментной, за исключением разве лишь при следующих базисах: a) $\mu_0 = c$; $\mu_i = 0$, i = 1, ..., (n-1); б) $\mu_i = c$, $i=0,\ldots,(n-1).$

Доказательство. Выделим из рассматриваемой $(\mu_i)_0^\infty$ три отрезка-функционала: $F_p = (\mu_i)_0^p$; $F_{p+1} = (\mu_i)_0^{p+1}$; $F_{p+2} = (\mu_i)_0^{p+2}$.

1) Рассмотрим случай, когда их экстремальные полиномы имеют одинаковые знаки, т. е. ими являются либо а) $+T_{p}(x)$, $+T_{p+1}(x)$, $+T_{p+2}(x)$. либо б) $T_p(x), T_{p+1}(x), T_{p+2}(x).$

Известно, что для полиномов Чебышева $T_p(x) = \cos p \arccos(2x-1)$

имеет место рекуррентная формула $T_{p+2}(x) = \cos p \arccos(2x-1)$ имеет место рекуррентная формула $T_{p+2}(x) = 4xT_{p+1}(x) - 2T_{p+1}(x) - T_p(x)$. Тогда $F_{p+2}(T_{p+2}) = 4F_{p+2}(xT_{p+1}) - 2F_{p+2}(T_{p+1}) - F_{p+2}(T_p)$. В случае а) $F_{p+2}(T_{p+2}) = N_{p+2}$; $F_{p+2}(T_{p+1}) = N_{p+1}$; $F_{p+2}(T_p) = N_p$, откуда $4F_{p+2}(xT_{p+1}) = N_{p+2} + 2N_{p+1} + N_p$. Учитывая, что $N_p < N_{p+1} < N_{p+2}$, получим $N_{p+2} - N_p > N_{p+2} - F_{p+2}(xT_{p+1})$.

Но
$$F_{p+2}\left(xT_{p+1}\right)=\sum_{l=0}^{p+2}\Delta_{l,\ p+2} au_{l,\ p+2}T_{p+1}\left(au_{l,\ p+2}\right)$$
, где $\left\{ au_{l,\ p+2}\right\}_{0}^{p+2}$ — узлы по-

линома $T_{p+2}(x)$; $\{\Delta_{l,p+2}\}_{0}^{p+2}$ — нагрузки при разложении $(\mu_{l})_{0}^{p+2}$ по узлам $\{\tau_{l,p+2}\}_{0}^{p+2}$. Нетрудно проверить, что $T_{p+1}(\tau_{l,p+2})=(-1)^{p-l-1}(1-2\tau_{l,p+2})$. Используя это, имеем

$$\begin{split} F_{p+2}(xT_{p+1}) &= -\sum_{l=0}^{p+2} |\Delta_{l, p+2}| \tau_{l, p+2} (1 - 2\tau_{l, p+2}), \\ N_{p+2} - N_p &> \sum_{l=0}^{p+2} |\Delta_{l, p+2}| + \sum_{l=0}^{p+2} |\Delta_{l, p+2}| \tau_{l, p+2} (1 - 2\tau_{l, p+2}) > \\ &> \sum_{l=0}^{p+2} |\Delta_{l, p+2}| (1 - \tau_{l, p+2}), \end{split}$$

Заметим, что $\sum_{l=1}^{p+2} |\Delta_{l,\ p+2}| (1- au_{l,\ p+2}) = N_{p+1,\ 1}$ — норма $(\mu_{l,\ l})_0^{p+2}$, где

 $\mu_{i,\;1} = \mu_i - \mu_{i+1}$. Отсюда $N_{p+2} - N_p > N_{p+1,\;1} \geqslant N_{n-2,\;1}$, где $N_{n-2,\;1} - \text{норма}$ $(\mu_{i,\;1})_{\;0,\;1}^{\;n-1}$, причем $N_{n-2,\;1} > 0$ при любом базисе $(\mu_i)_0^{\;n-1}$ кроме $\mu_i = c$, $i=0,\ldots,(n-1).$

В случае б) получим ту же оценку для $N_{z=z}-N_z$ аналогичными рас-

2) Рассмотрим случай, когда знаки экстремальных полиномов отрезков $(_i)_0^p, (\mu_i)_0^{p+1}, (\mu_i)_0^{p+2}$ чередуются, т. е. являются либо а) $-T_{_{\mathbb{P}}}(x),$ $-T_{p+1}(x), +T_{p+2}(x),$ либо б) $-T_{_{\mathbb{P}}}(x), +T_{p+1}(x), -T_{p-1}(x).$ Из $(^1)$ известно, что если $(\mu_i)_0^p$ имеет экстремальным $=T_{_{\mathbb{P}}}(x).$ то $(i)_0^p, (\mu_i)_0^{p+1}, (\mu_i)_0^{p+2}$

 $(\mu_{0,i})_{0}^{p}$, где $\mu_{0,i} = \mu_{0,i-1} - \mu_{1,i-1}$, имеет экстремальным $\pm T_{-}(1-x) =$ $=\pm (-1)^p T_p(x)$, причем их нормы равны: $N_p = N_{0,p}$. Отсюда отрезкам $(\mu_i)_0^p$, $(\mu_i)_0^{p+1}$, $(\mu_i)_0^{p+2}$ с чередующимися знаками соответствуют $(\mu_i)_0^p$, $(\mu_0, i)_0^{p+1}, (\mu_0, i)^{p+2}$ с одинаковыми знаками экстремальных полиномов и тогда $N_{p+2}-N_p=N_{0,p+2}-N_{0,p}>N_{1,n-2}$, где $N_{1,n-2}$ — норма причем $N_{i, n-2} > 0$ при любом базисе $(\mu_i)_{0}^{n-1}$, кроме $\mu_0 = c$; $\mu_i = 0$, i = 0 $=1,\ldots,(n-1).$

3) В случае, если экстремальными полиномами являются либо а) $+T_p(x)$, $+T_{p+1}(x)$, $-T_{p+2}(x)$, либо б) $-T_p(x)$, $-T_{p+1}(x)$, $+T_{p+2}(x)$, проделав выкладки, аналогичные случаю 1), получим N_{p+2} $-N_p > N_{n-1}/2 > 0.$

4) В случае, если экстремальными полиномами являются либо a) $T_p(x)$, $T_{p+1}(x)$, $T_{p+2}(x)$, $T_{p+2}(x)$, $T_p(x)$, $T_{p+1}(x)$, $T_{p+2}(x)$, проведя рассуждения, аналогичные случаю 2) и использовав результат

случая 3), получим $N_{p+2} - N_p > N_{n-1}/2 > 0$.

Итак, рассмотрев все возможные случаи распределения знаков экстремальных полиномов имеем $N_{p+2}-N_p>k$, где k — минимальное из чисел $N_{n-2,\;1},\;N_{1,\;n-1},\;N_{n-1}$ / 2. Отсюда $N_p>^{1}/_2(p-(n-1))\,k+N_{n-1}=\alpha p+\beta$, где $\alpha = \text{const} > 0$, $\beta = \text{const}$, за исключением разве лишь упомянутых в теореме базисных, и $(\mu_i)_0^\infty$ не является моментной.

2. Рассмотрим случай аморфной последовательности $(\alpha_h)_0^{\infty}$. Из (1) известно, что каждый частичный отрезок $(\alpha_h)_0^{p-1}$, помимо критического интервала (μ_p', μ_p'') , имеет еще и интервал наилучшего продолжения $[\alpha_{p}^{'}, \alpha_{p}^{''}]$, причем $\mu_{p} \leqslant \alpha_{p}^{'} < \alpha_{p}^{''} \leqslant \mu_{p}^{''}$.

Теорема 2. Существует единственная (с точностью до множителя) моментная последовательность $(a_h)_0^\infty$, обладающая тем свойством, что каждый ее частичный отрезок-функционал $(\alpha_k)_{n}^{p-1}$, p>1, аморфный и его интервал наилучшего продолжения совпадает с критическим интервалом: $\alpha_{p}' = \mu_{p}'; \, \alpha_{p}'' = \mu_{p}''.$

Доказательство этой теоремы требует установления некоторых свойств vзлов полиномов Чебышева $\{T_p(x)\}$.

Лемма 1. Имеют место следующие соотношения

$$\sum_{l=0}^{p-1} (-1)^{p-l} \tau_{l, p}^{k} + \frac{1}{2} = \begin{cases} 0, & k = 1, ..., (p-1), \\ p/2^{2p-1}, & k = p, \end{cases}$$

 $e\partial e \left\{ \tau_{l, p} \right\}_{0}^{p}$ — узлы полинома Чебышева $T_{p}(x) = \cos p \arccos(2x-1)$.

Доказательство. Введем в рассмотрение отрезок-функционал $(\mathbf{v_i})_0^p = \frac{1}{2}, 0_1, \dots, 0_{p-1}, 0_p$ и будем искать его критический интервал для p-го параметра. Ввиду специальной структуры $(v_i)_0^p$, его критический интервал можно найти, не пользуясь общей теорией, а именно:

интервал можно наити, не пользунсь общей теорией, а именно: а) если p четное, то $\mathbf{v}_p{''}=0$, так как $T_p(\bar{\mathbf{v}})={}^1\!/_2=N_p$ и $\Delta_0{''}={}^1\!/_2$; $\Delta_i{''}=0,\ i=1,\ldots,p$. Отсюда и, используя соотношения, полученные в (²), имеем: $\bar{\Delta}^{(p)}=1,\ L_p=p/2^{2p-1},\ \mathbf{v}_p{'}=-p/2^{2p-1};\ \Delta_0{'}=0;\ \Delta_i{'}=-(-1)^{p-i-1},\ i=1,\ldots,\ (p-1);\ \Delta_p{'}=-{}^1\!/_2.$ б) если p нечетное, то $\mathbf{v}_p{'}\leqslant 0;\ \Delta_0{'}={}^1\!/_2;\ \Delta_i{'}=0,\ i=1,\ldots,p$ и из (²) получим $\bar{\Delta}^{(p)}=1;\ L_p=p/2^{2p-1};\ \mathbf{v}_p{''}=p/2^{2p-1};\ \Delta_0{''}=0,\ \Delta_i{''}=(-1)^{p-i}$

Слепствие. Имеют место следующие соотношения:

$$\sum_{l=0}^{p-1} \dot{\tau}_{l, p}^{k} + \frac{1}{2} = \begin{cases} \sum_{l=0}^{p-1} \dot{\tau}_{l, p}^{k}, & k = 1, \dots, (p-1), \\ \sum_{l=0}^{p-1} \dot{\tau}_{l, p}^{k} + \frac{p}{2^{2p-1}}, & k = p. \end{cases}$$

Имеют место соотношения: $\sum_{k=0}^{p-1} \tau_{l,p}^{k} + \frac{1}{2} = u_{k}p, k = 0$ Лемма

= $1, 2, \ldots, \varepsilon \partial e u_k$ не зависит от p.

Лемма 2 доказывается по индукции.

Следствие. Имеют место следующие соотношения:

$$\frac{2}{p} \left(\sum_{l=0}^{p-1} \tau_{l, p}^{+k} + \frac{1}{2} \right) = \frac{2}{p} \sum_{l=0}^{p-1} \overline{\tau}_{l, p}^{k} = u_{k}, \quad k = 0, \dots, (p-1).$$

Доказательство теоремы 2. Пусть $(\alpha_h)_{a}^{p-1}$ — аморфный $\alpha_p' = \mu_p', \alpha_p'' = \mu_p''.$ Тогда

$$a_k = \sum_{l=1}^p \Delta_l'' \tau_{l,p}^{k} = \sum_{l=1}^p \Delta_l' \widetilde{\tau}_{l,p}^{k}, \quad k = 0, \dots, (p-1),$$

где $\Delta_{l}{''}>0,\; \Delta_{l}{'}>0.$ Найдем ($\Delta_{l}{''}$) и ($\Delta_{l}{'}$). Из (2) известно: $N_{p}{'}+N_{p}{''}=$ = $ilde{\Delta}^{(p)}p=2lpha_{\scriptscriptstyle 0},$ откуда $ilde{\Delta}^{(p)}=2lpha_{\scriptscriptstyle 0}$ / p. Используя формулу $\Delta_l^{''}=\Delta_l^{'}+1$ $+ (-1)^{p-} \frac{\widetilde{\Delta}^{(p)}}{1+2}$, получим все $\Delta_l^{''} = \frac{2|1}{p} \alpha_0$ и все $\Delta_l^{'} = \frac{2|1}{p} \alpha_0$. Подставив (Δ_{l}^{-n}) и (Δ_{l}) в выражения для α_{k} имеем

$$\alpha_k = \frac{2\alpha_0}{p} \left(\sum_{l=0}^{p-1} \tau_{l,p}^{+k} + \frac{1}{2} \right) = \frac{2\alpha_0}{p} \sum_{l=0}^{p-1} \overline{\tau}_{l,p}^{k} = \alpha_0 u_k, \quad k = 0, \dots, (p-1),$$

т. е. все числа $(\alpha_k)_0^{p-1}$ определяются единственным образом (с точностью до множителя).

Построим $(a_k)_0^{\infty} = (u_k)_0^{\infty}$ и рассмотрим частичный отрезок $(a_k)_0^{-1} =$ $u_k = (u_k)_0^{p-1}$. Из представления $u_k = \frac{2}{p} \left(\sum_{l,p}^{p-1} \dot{\tau}_{l,p}^k + \frac{1}{2} \right) = \frac{2}{p} \sum_{l,p}^{p-1} \dot{\tau}_{l,p}^k, k = 0,...$

 \ldots , (p-1), и независимости u_k от p следует, что $(a_k)_0^{p-1}$ аморфный, причем

$$\begin{split} \alpha_p^{''} &= \mu_p^{''} = \frac{2}{p} \left(\sum_{l=0}^{p-1} \tau_{l,\ p}^{k} + \frac{1}{2} \right); \quad \alpha_p^{'} = \mu_p^{'} = \frac{2}{p} \sum_{l=0}^{p-1} \overline{\tau}_{l,\ p}^{k}; \\ L_p &= \mu_p^{''} - \mu_p^{'} = \frac{1}{2^{2p-2}} \,. \end{split}$$

Единственность при $\alpha_0=1$ очевидна. Следствие. Если $(\alpha_i)_0^\infty$ обладает указанным в теореме свойством, $To L_p = \alpha_0 / 2^{2p-2}$.

3. Рассмотрим простейшую узловую абсолютно монотонную последовательность $(\mu_i)_0^{\infty} = (\sigma^i)_0^{\infty}, \ 0 < \sigma < 1$. Составим последовательность ее частичных отрезков $(\mu_i)_0^{n_i}$, $(\mu_i)_0^{n_{i+1}}$, ..., $(\mu_i)_0^{p_i}$, Обозначим критический интервал $(\mu_i)_0^{p_i}$ для p-го параметра через (μ_p', μ_p'') , а нормы отрезков μ_0 , ..., μ_{p-1} , μ_p'' и μ_0 , ..., μ_{p-1} , μ_p' — через N_p'' и N_p' . Из (²) известно, что для любой моментной последовательности $(\mu_i)_0^{\infty}$ с нормой N имеет место $N_p'' + N_p' \le 4N_p$. В случае же, если $(\mu_i)_0^{\infty} = (\sigma^i)_0^{\infty}$, то $N_p''+N_p'\geqslant p$ и, следовательно, хоть одна из последовательностей норм $\{N_p''\}$ или $\{N_p''\}$ расходится. Теорема 3. Если $(\mu_i)_0^\infty=(\sigma^i)_0^\infty$, где $0<\sigma<1$, то существует такая выборка $p=p_k$, при которой $\lim N_{p_k}''=\lim N_{p_k}'=\infty$.

Доказательство. При любом p для $N_p{}'$ и $N_p{}''$ справедливы оценки

$$N_{p}^{'} = -T_{p}(\mathfrak{z}) + 2^{2p-1}(\mathfrak{z}^{p} - \mu_{p}^{'}) = -T_{p}(\mathfrak{z}) + 2^{2p-1}h_{p}^{'} \geqslant 2^{2p-1}h_{p}^{'} - 1,$$

$$N_{p}^{"} = T_{p}(\mathfrak{z}) + 2^{2p-1}(\mu_{p}^{"} - \mathfrak{z}^{p}) = T_{p}(\mathfrak{z}) + 2^{2p-1}h_{p}^{"} \geqslant 2^{2p-1}h_{p}^{"} - 1.$$

Из (2) следует, что $p/2^{2p-1} \leqslant h_p' + h_p'' \leqslant 4p/2^{2p-1}$. А тогда для доказательства теоремы достаточно найти такую выборку $p=p_k$, при которой имеют одинаковый порядок малости.

Пусть $\tau_{s, p} < \sigma < \tau_{s+1, p}$, где $\tau_{s, p}$ — ближайший слева к точке σ узел полинома $T_p(x)$; p фиксировано и достаточно велико, чтобы оказалось $s \ge 1$; $s+1 \le p-1$. Из (2) имеем:

а) если
$$T_p(\tau_{s,p}) = +1$$
, то $h'_p = \max_{(i)} R_p^{(i)}(\mathfrak{z}) = R_p^{(s)}(\mathfrak{z})$, $h''_p = -\min_{(i)} R_p^{(i)}(\mathfrak{z}) = R_p^{(s+1)}(\mathfrak{z})$, $h'_p/h''_p = (\tau_{s+1,p} - \mathfrak{z})/(\mathfrak{z} - \tau_{s,p})$;

б) если
$$T_p(\tau_{s,p}) = -1$$
, то $h_p' = R_p^{(s+1)}(\sigma); h_p'' = -R_p^{(s)}(\sigma); \quad h_p'/h_p'' = (\sigma - \tau_{s,p}) / (\tau_{s+1,p} - \sigma).$

Используя, что, по определению, $s = E\left(\frac{2p}{\pi} \arcsin \sqrt{\sigma}\right) = E\left(\alpha p\right)$, где $E(\alpha p)$ — целая часть αp , получим

$$\lim_{p\to\infty}\frac{\sigma-\tau_{s,\,p}}{\tau_{s+1,\,p}-\sigma}=\lim_{p\to\infty}\frac{\alpha p-E\left(\alpha p\right)}{1-\left[\alpha p-E\left(\alpha p\right)\right]}\;.$$

Отсюда видно, что для доказательства теоремы достаточно найти такую выборку $p = p_h$, при которой

$$0 < a \le \alpha p_k - E(\alpha p_k) \le A < 1.$$

Будем ее искать. Функция $E(\alpha x)$ имеет разрывы в точках $\{m \mid \alpha\}^{\infty}$, причем, поскольку $\alpha < 1$, то между двумя соседними точками разрыва имеется по крайней мере одно целое число. Обозначим через p_m ближайшее слева к точке m/α (или совпадающее с ней) целое число. Искомую выборку $p = p_k$ определим так:

$$p_{k} = \begin{cases} p_{m} + 1, & \text{если } m/\alpha \leqslant p_{m} + \frac{1}{2}, \\ p_{m}, & \text{если } m/\alpha > p_{m} + \frac{1}{2}. \end{cases}$$

Действительно, при $m/\alpha \leqslant p_m + \frac{1}{2} \frac{1}{2} \alpha \leqslant \alpha p_k - E(\alpha p_k) \leqslant \alpha$ и при $m/\alpha > p_m + \frac{1}{2} 1 - \alpha \leqslant \alpha p_k - E(\alpha p_k) \leqslant 1 - \frac{1}{2} \alpha$. Взяв за a минимальное из чисел $\frac{1}{2} \alpha$ и $1 - \alpha$, а за A — максимальное из чисел α и $1 - \frac{1}{2} \alpha$ получим, что $p = p_k$ искомая.

 $N_{\mathfrak{p}}'$ и $N_{\mathfrak{p}}''$ имеют порядок роста $\mathfrak{p}.$ Следствие. $\Pi pu p = p_h$

Ленинградский электротехнический институт связи им. М. А. Бонч-Бруевича

Поступило 23 I 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Е. В. Вороновская, Метод функционалов и его приложения, 1963.
² Е. В. Вороновская, Э. А. Ярв, ДАН, 197, № 1 (1971).