УДК 517.9+530.145.6

МАТЕМАТИЧЕСКАЯ ФИЗИКА

Д. Р. ЯФАЕВ

О ДИСКРЕТНОМ СПЕКТРЕ ТРЕХЧАСТИЧНОГО ОПЕРАТОРА ШРЕДИНГЕРА

(Представлено академиком В. И. Смирновым 22 XII 1971)

1. Задачу рассеяния для оператора Шредингера H системы трех попарно взаимодействующих частиц подробно исследовал Л. Д. Фаддеев (см. (¹)). Для изучения резольвенты оператора H он предложил систему интегральных уравнений, которая рассматривается в некотором вспомогательном банаховом пространстве. При этом важную роль играет исследование соответствующего однородного уравнения. В (¹) было показано, что множество значений параметра, для которых это уравнение имеет нетривиальные решения, может иметь в качестве предельных точек разве лишь собственные числа соответствующих парных задач. Отсюда легко следует, что отрицательно парных взаимодействий оператора H также могут пакапливаться только к этим числам. В пастоящей работе мы, опираясь на технику Л. Д. Фаддеева, показываем, что при естественных предположениях относительно парных взаимодействий оператор H может иметь разве лишь конечное число отрицательных собственных значений.

Наша методика применима и к некоторым трехчастичным операторам, парные взаимодействия которых имеют кулоновские особенности. В частности, мы показываем, что спектр отрицательного иона водорода не имеет лежащих левее нуля точек накопления (и следовательно, имеет лишь конечное число собственных значений левее непрерывного спектра). Тем самым решена одна из задач, поставленных в известном обзоре А. Г. Сигалова (2). Отметим, что наш результат является подтверждением гипотезы, высказанной физиками (см., например, (3)), относительно дискретного спектра отрицательного иона водорода.

2. В настоящей заметке мы будем в основном придерживаться обозначений, принятых в работе (1). Всюду подразумевается, что оператор *Н* рассматривается в системе координат, связанной с центром инерции трех частиц; тогда

$$H = H_0 + \sum_{\alpha} V_{\alpha}, \quad \alpha = 12, 13, 23,$$

причем операторы $H_{\scriptscriptstyle 0}$ и $V_{\scriptscriptstyle lpha}$ определяются в импульсном представлении формулами

$$(H_0 f)(k_{\alpha}, p_{\alpha}) = (k_{\alpha}^2/(2m_{\alpha}) + p_{\alpha}^2/(2n_{\alpha})) f(k_{\alpha}, p_{\alpha}),$$

$$(V_{\alpha} f)(k_{\alpha}, p_{\alpha}) = \int v_{\alpha}(k_{\alpha} - k_{\alpha}') f(k_{\alpha}', p_{\alpha}) dk_{\alpha}'.$$

Здесь и в дальнейшем k_{α} , p_{α} — координаты, сопряженные к координатам Якоби, а m_{α} , n_{α} — различные приведенные массы. Интеграл без указания пределов означает интегрирование по всему пространству R^3 .

Пусть оператор h_{α} действует на функции переменной $k \in R^3$ по формуле

$$(h_{\alpha}f)(k) = \frac{k^2}{2m_{\alpha}}f(k) + \int v_{\alpha}(k-k')f(k')dk'.$$

Обозначим через $-\varkappa_{s,^2\alpha}$ собственные числа оператора h_{\circ} . Различными методами было доказано (¹, ⁴, ⁵), что непрерывный спектр H заполняет полуось $[-\varkappa^2, \infty)$, где $-\varkappa^2 = \min(-\varkappa^2_{s,\alpha})$, а вне интервала $[-\varkappa^2, \infty)$ может находиться лишь счетное множество конечнократных собственных значений.

Предположим, что парные взаимодействия $v_{lpha}(k),\,v_{lpha}(-k)=\widetilde{v_{lpha}(k)},$ являются дифференцируемыми функциями k при $k \neq 0$, причем

$$|v_{\alpha}(k)|, |\nabla v_{\alpha}(k)| \leq C(1+|k|)^{-1-\theta}, \quad \theta > 1/2, |\nabla v_{\alpha}(k+l) - \nabla v_{\alpha}(k)| \leq C|l|^{\nu}(1+|k|)^{-1-\theta}, \quad \nu > 0$$
 (1)

при $|k| \ge 1$ и $|l| \le 1$. Через C мы обозначаем различные постоянные, точное значение которых нам безразлично. При k=0 функции $\nu_{\alpha}(k)$ могут, например, иметь степенные особенности с показателем, меньшим единицы. Пусть при $|k| \leq 1$ справедливо представление

$$v_{\alpha}(k) = \int_{-\beta_0}^{1} |k|^{\beta} dS_{\alpha}(\beta) + \hat{v}_{\alpha}(k), \quad \beta_0 < 1, \tag{2}$$

где S_{α} — конечная мера, а функция $\hat{v}_{\alpha}(k)$ дифференцируема и при $|k| \leqslant 1$ удовлетворяет оценке

$$|\nabla \hat{v}_{\alpha}(k+l) - \nabla \hat{v}_{\alpha}(k)| \leqslant C|l|^{\nu}. \tag{3}$$

Наши предположения относительно $v_{\alpha}(k)$ несколько отличаются от условий работы (1). Мы требуем дифференцируемости потенциалов при $k \neq 0$; в то же время наличие у $v_{\alpha}(k)$ степенных особенностей вида $|k|^{\beta}$, $\beta>-1$, соответствует потенциалам, убывающим в x-представлении как $r^{-2-\varepsilon}$, $\varepsilon>0$. Как и в (¹), нетрудно доказать, что при условиях (1) — (3) оператор II является самосопряженным на плотной в $L_2(R^6)$ области определения, состоящей из всех функций f(k, p) с конечным интегралом

$$\iint f^{2}(k, p) (1 + k^{2} + p^{2})^{2} dk dp < \infty.$$

T е о p е M а 1. При сделанных предположениях относительно $v_{\alpha}(k)$ отрицательные собственные значения оператора Н (в том числе лежащие на непрерывном спектре) могут иметь лишь конечную кратность и не имеют отрицательных точек накопления.

Приведем здесь набросок доказательства теоремы 1. Ради простоты будем считать, что каждый из операторов h_{α} имеет ровно одно отрицательное собственное число $-\kappa_{\alpha}^2$. Предположим, что собственные значения z_s оператора H имеют отрицательную точку накопления z_0 . Обозначим через ω_s решения однородного интегрального уравнения Л. Д. Фаддеева при значениях параметра, равных z_s , нормированные на единицу во вспомогательном банаховом пространстве \mathfrak{B} (см. (1)) шести компонентных вектор-функций $\{\omega = \rho_{\alpha}(k, p), \sigma_{\alpha}(p)\}$, удовлетворяющих некоторому условию Гёльдера. В работе (1) доказана компактность и в В, что, как будет видно ниже, противоречит ортогональности собственных функций ф, оператора $\rho_{\alpha}^{(s)}$ и $\sigma_{\alpha}^{(s)}$ Н. Отметим, что ф, просто выражаются через и обозначим через ψ₀ функцию, отвечающую ω₀, предельному элементу сходящейся подпоследовательности ω_s.

В работе (1) показано, что, если $z_0 \neq -\varkappa_{\alpha}^2$, то в интеграле $\iint \psi_s\left(k,\,p\right) \overline{\psi_0\left(k,\,p\right)} \, dk \, dp = 0$

$$\iint \psi_s(k, p) \, \overline{\psi_0(k, p)} \, dk \, dp = 0 \tag{4}$$

можно перейти к пределу при $s \to \infty$. Отсюда легко вытекает равенство ω_0 нулю ,что противоречит условию нормировки ω_0 . Так как выражения $\rho_{\alpha}^{(s)}$ и $\sigma_{\alpha}^{(s)}$ становятся сингулярными при $p_{\alpha} = 0$ для значений z_s , неограниченно приближающихся к какому-либо парному собственному числу $-\kappa_{\alpha}^{2}$, то в случае $z_{0}=-\kappa_{\alpha}^{2}$ предельный переход в (4) непосредственно оправдать нельзя. Однако из равенства (4) и компактности ω_s удается извлечь, что $\sigma_\alpha^{(0)}(0)=0$, если $z_0=-\varkappa_\alpha^2$. Условие $\sigma_\alpha^{(0)}(0)=0$ позволяет после соответствующих преобразований оценить интеграл от функции $\psi_s\bar{\psi}_0$ по области $|p_\alpha|\leqslant \delta$ равномерно по s и тем самым оправдать предельный переход при $s\to\infty$ в равенстве (4). Как и в (1), отсюда вытекает, что $\omega_0\equiv 0$, а потому собственные значения z_s отрицательных точек накопления иметь не могут.

3. В работе (6) было показано, что оператор

$$H_{\eta}^{(c)} = -(2m_{\alpha})^{-1} \Delta_{r_{\alpha}} - (2n_{\alpha})^{-1} \Delta_{\rho_{\alpha}} - r_{12}^{-1} - r_{13}^{-1} + \eta r_{23}^{-1},$$

где r_{α} , $\alpha=ij$, — расстояние между i-й и j-й частицами, а ρ_{α} — расстояние от k-й частицы до центра инерции частиц i и j (мы пользуемся здесь записью $H_{\eta}^{(c)}$ в x-представлении; r_{α} , ρ_{α} — координаты Якоби), имеет при $\eta<1$ бесконечное число изолированных собственных значений, накапливающихся к левому концу непрерывного спектра. В случае $\eta>1$ Дж. Ушийяма доказал $(^{7})$, что левее точки $-(\mathbf{x}^{(0)})^{2}$ может находиться лишь конечное множество собственных значений оператора $H_{(\eta)}^{(c)}$. Важным примером оператора вида $H_{\eta}^{(c)}$ является оператор Шредингера для отрицательного иона водорода. Он соответствует не исследованному ранее случаю $\eta=1$, который не поддается вариационной технике работ $\binom{6}{5}, 7$).

Перейдем к импульсному представлению и рассмотрим несколько более общий по сравнению с $H_1^{(c)}$ оператор $\tilde{H}^{(c)}$. Предположим, что парные взаимодействия $v_{\alpha}^{(c)}(k)$ оператора $\tilde{H}^{(c)}$ представимы в виде

$$v_{\mathbf{Y}}^{(c)}(k) = -|k|^{-2} + \widetilde{v}_{\mathbf{Y}}(k), \quad \mathbf{Y} = 12, 13; \quad v_{23}^{(c)}(k) = |k|^{-2} + \widetilde{v}_{23}(k),$$

где \tilde{v}_{γ} и \tilde{v}_{23} удовлетворяют условиям (1) — (3) и $\tilde{v}_{\gamma}(k) = \tilde{v}_{\gamma}(-k)$, а соответствующий оператор $h_{23}^{(c)}$ не имеет собственных значений.

Наш подход к исследованию дискретного спектра оператора основан на рассмотрении интегральных уравнений Л. Д. Фаддеева. При итерациях и других преобразованиях этих уравнений удается проследить (происходящее за счет компенсации особенностей $v_{\gamma}^{(c)}(k)$ и $v_{23}^{(c)}(k)$) сокращение сингулярностей вида $|k|^{-2}$ и $|k|^{-1}$ в соответствующих ядрах интегральных уравнений. (Отметим, что сокращение сингулярностей порядка $|k|^{-2}$ прослежено в (8).) Для сокращения сингулярностей вида $|k|^{-1}$ существенна центральная симметрия функций $\tilde{v}_{\gamma}(k)$. Исследование получившейся системы уравнений с гладкими ядрами приводит к следующему результату.

T е о р е м а 2. Отрицательные собственные значения оператора $\widetilde{H}^{(c)}$ конечнократные u не имеют лежащих строго левее нуля точек накопления.

Следствие. Оператор $H^{(c)}$ имеет разве лишь конечное число собственных значений, лежащих ниже непрерывного спектра.

Автор выражает искреннюю благодарность М. Ш. Бирману и Л. Д. Фаддееву за интерес к работе.

Примечание при корректуре. Когда статья была уже сдана в печать, автору удалось получить обобщения теорем 1 и 2 на случай систем из произвольного числа частиц. Отсюда, в частности, вытекает утверждение о конечности дискретного спектра у атомарных ионов с зарядом ядра на единицу меньшим заряда электронной оболочки, а также у систем типа двухатомных молекул.

Ленинградский государственный университет им. А. Жданова Поступило 12 XII 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Л. Д. Фаддеев, Тр. Матем. инст. АН СССР, 69 (1963). ² А. Г. Сигалов, УМН, 22, 3 (1967). ³ Г. Бете, Э. Солпитер, Квантовая механика атомов с одним и двумя электронами, М., 1960. ⁴ W. Hunziker, Helv. phys. acta, 39, 451 (1966). ⁵ Г. М. Жислин, Тр. Московск. матем. общ., 9, 81 (1960). ⁶ Т. Каto, Trans. Am. Math. Soc., 70, 212 (1951). ⁷ J. Uchiyama, Publ. Res. Ins. Math. Sci., Kyoto Univ., Ser. A, 5, 51 (1969). ⁸ А. М. Веселова, Теоретич. и матем. физ., 3, 326 (1970).