УЛК 519.95+519.262.2:616.9-036.2-084

КИБЕРНЕТИКА И ТЕОРИЯ РЕГУЛИРОВАНИЯ

Ю. Г. ИВАННИКОВ, В. А. КОНДРАТЬЕВ

ОПЕНКА ЭФФЕКТИВНОСТИ МАССОВЫХ ПРОТИВОЭНИДЕМИЧЕСКИХ МЕРОПРИЯТИЙ

(Представлено академиком В. М. Глушковым 12 XI 1971)

Противоэпидемические мероприятия при целом ряде инфекционных заболеваний посят массовый характер, охватывают большие контингенты людей, иногда население всей страны, и оценка их эффективности — важная и актуальная задача. Эта оценка строится на основании отношения вероятности p_1 заболеть в контрольной группе к вероятности p_2 заболеть в группе: $I = p_1 / p_2$, называемом индексом Поскольку точечная оценка не дает представления о возможном отклонении индекса эффективности от среднего значения, ищутся доверительные границы для него. В литературе даются правила построения доверительного интервала для I только в случае, когда распределение частот приближается к пуассоновскому. Результаты, изложенные в (2), также не решают задачи, так как они обеспечивают построение доверительного интервала с уровнем доверия $\alpha < \alpha'$ (где α' – избранный). Здесь рассматривается построение доверительных границ с уровнем доверия a=a' в случае нормального и биномиального распределений, а также некоторые свойства индекса эффективности. В пп. 1-3 p_1 и p_2 попимаются как вероятности некоторых событий A_1 и A_2 ; в пп. 1, 2 поставленная задача решается исходя из испытаний по схеме Бернулли, причем в п. 2 используется нормальная аппроксимация; в п. 3 используется критерий х².

1. Пусть проведено n_1 испытаний для события A_1 и n_2 испытаний для события A_2 , причем все испытания независимы. Результат этих испытаний изобразится точкой (m_1, m_2) целочисленной решетки

$$D = \{(m_1, m_2): m_1 = 0, 1, \ldots, n_1, m_2 = 0, 1, \ldots, n_2\};$$

здесь m_1 и m_2 — число реализаций событий A_1 и A_2 соответственно. Пусть $\{D_i\},\;i=1,\ldots,k,$ — конечная $\;$ последовательность $\;$ областей решетки D, $D_i \subset D$, удовлетворяющая следующим условиям:

 $\{D_i\}$ сужающаяся, $D_{i+1} \subseteq D_i, i=1,2,\ldots,k-1;$ $\{D_i\}$ $\{D_i\}$ сужающаяся, $\{D_i\}$

 3°) D_2 не содержит точек (m_1, m_2) , у которых $m_1 = 0$; 4°) для любой области D_i из этой последовательности, если $(m_1{}^{\circ}, m_2{}^{\circ}) \in$ $\in D_i$ if $m_1 \geqslant m_1^0$, a $m_2 \leqslant m_2^0$, to $(m_1^0, m_2) \in D_i$.

Определим функции $f_i(I)$ следующим образом:

$$f_{i}(I) = \sup_{\substack{p_{1}^{0}/p_{1}^{0}=I\\ i=1, 2, ..., k, I>0}} P\{(m_{1}, m_{2}) \in D_{i} | p_{1} = p_{1}^{0}, p_{2} = p_{2}^{0}\},$$

 Π емма. Функция f_i непрерывные и неубывающие на промежутке $(0,+\infty)$, npuvem das $i\geqslant 2$ $\lim_{I\to 0}f_i(I)=0$, $\lim_{I\to 0}f_i(I)=1$. При фиксированном I последовательность $f_i(I)$, $i=1,2,\ldots,k$, невозрастающая.

Зафиксируем а из промежутка (0, 1). Тогда из леммы следует, что при $i \ge 2$ уравнение

$$f_i(I) = \alpha \tag{1}$$

разрешимо.

Пусть для $i \ge 2$ I_i — наибольшее из решений уравнения (1). I_i полоят к равным нулю. Последовательность $I_i,\ i=1,2,\ldots,k,$ неубывающая. \vec{I}_i демму, имеем при $i_4 < i_2$

$$f_{i_2}(I_{i_2}) = \alpha = f_{i_1}(I_{i_1}) \geqslant f_{i_2}(I_{i_1})$$

і. Прить $(m_i, m_2) \leqslant D_i \setminus D_{i+1}$ (при i=k положим $D_{k+1} = \phi$). Положим . $m_z)=I_i$. Тем самым на решетке D определена функция $I_{\scriptscriptstyle
m B}$ (одно- $\pm i$ $\mp \pm i$. поскольку последовательность D_i сужается).

 \mathbb{T} ворема 1. Eсли m_1 и m_2 — число реализаций событий A_1 и A_2 в n_1

пытаниях соответственно, то

$$\sup_{p_{1}^{0}, p_{2}^{0}} P\left\{I_{H}\left(m_{1}, m_{2}\right) > \frac{p_{1}}{p_{2}} \middle| p_{1} = p_{1}^{0}, p_{2} = p_{2}^{0}\right\} = \alpha,$$

 $I=I_{z}\cdot (m_{1},\,m_{2})-$ нижняя доверительная граница для отношения $I=p_{1}/p_{2}$ и в венем доверия lpha. При этом $I_{\mathfrak{n}}$ не убывает по $m_{\mathfrak{n}}$ и не возрастает по $m_{\mathfrak{p}}$. Γ аким образом, для нахождения нижней доверительной границы для I \sim годать последовательность областей D_i с указанными свойствами.

Этот процесс обратим в следующем смысле. Пусть $I_{\rm u}'$ – нижняя довелтельная граница для I с уровнем доверия, не превосходящим lpha $(\widetilde{I}_{\scriptscriptstyle \mathrm{H}}{}'$ функция результатов испытаний $(m_1, m_2) \in D$). Пусть $I_{n'}$ не убывает по m_1 и не возрастает по m_2 . Перенумеруем все значения $I_{\scriptscriptstyle \mathrm{H}}{}'$ на D в порядке возрастания: $I_1' < I_2' < \ldots < I_k'$; здесь k — количество различных значений функции $I_{\rm H}', I_i'$ — ее i-е по величине значение.

Пусть $D_i = \{(m_i, m_2) \in D: I_{\text{H}}'(m_i, m_2) \geqslant I_i'\}, i = 1, 2, \ldots, k.$ Тогда D_i удовлетворяют условиям 1°) — 4°). Построим по областям D_i указанным выше способом нижнюю доверительную границу $I_{\scriptscriptstyle \rm H}$. Тогда справедлива

Теорема 2. 1°) $I_{\text{H}}'(m_1, m_2) \leq I_{\text{H}}(m_1, m_2)$ при всех $(m_1, m_2) \in D$.

 2°) Если уровень доверия α достигается при некоторых значениях p_1 u p_2 для границы $I_{\scriptscriptstyle \rm H}{}'$, то он при тех же p_1 и p_2 достигается и для гранииы $I_{\rm H}$.

Будем говорить, что уровень доверия α для нижней границы $I_{\rm H}$ достигается в обобщенном смысле в точке $I_0 \in (0, +\infty)$, если

$$\lim_{I \to I_{0} \to 0} \sup_{p_{1}^{0}/p_{0}^{0} = I} P\left\{I_{\mathrm{H}}\left(m_{1}, \, m_{2}\right) > I \, | \, p_{1} = p_{1}^{0}, \, p_{2} = p_{2}^{0}\right\} = \alpha.$$

Ясно, что если уровень доверия достигается, то он достигается и в обоб-

Теорема 3. 1°) Если уровень доверия а достигается в обобщенном смысле для границы $I_{\scriptscriptstyle \rm H}{}'$, в точке $I_{\scriptscriptstyle 0}$, то в этой точке он достигается в том же смысле и для границы $I_{\rm H}$.

 2°) Если I_{\circ} — какое-либо значение функции $I_{\rm H}$, то уровень доверия а для границы $I_{\rm H}$ достигается в обобщенном смысле е точке I_{\circ} .

Из всего изложенного ясно, что задача построения нижней доверительной границы не решается однозначно. Именно, для приведенного алгорифма любой выбор последовательности областей D_i со свойствами $1^{
m o})-4^{
m o})$ определяет некоторую нижнюю границу, причем для различных таких последовательностей полученные границы различны.

Теоремы 2 и 3 показывают, что построенные таким образом границы в определенном смысле оптимальнее любых других возможных границ. Кроме того, теорема 2 дает некоторую возможность разумным образом ликвидировать упомянутую неоднозначность. А именно, можно взять в качестве нижней границы $I_{\scriptscriptstyle \mathrm{H}}{}'$ значение, полученное с помощью какого-либо простого алгорифма, и, «поправив» его описанным выше способом, получить более оптимальную границу $I_{\scriptscriptstyle \rm H}$. При этом первое утверждение теоремы 2 может помочь при установлении каких-либо полезных свойств границы $I_{\mathbf{x}}$ (типа сходимости при $n_1, n_2 \to \infty$), если таковыми обладает граница $I_{\rm H}'$. Например, можно положить $I_{\rm H}'=p_{\rm 1H}/p_{\rm 2B}$, где $p_{\rm 1H}$ — пижняя граница для вероятности $p_{\rm 1}$, $p_{\rm 2B}$ — верхняя граница для вероятности $p_{\rm 2}$ (вычисляются обычным способом). $I_{\rm H}'$ — доверительная граница с уровнем доверия $\alpha \leqslant \alpha'$, $^{4}/_{2}\alpha$ — уровень доверия для доверительных границ $p_{\rm 1H}$, $p_{\rm 2B}$.

2. Пусть n_1 , n_2 , m_1 , m_2 имеют тот же смысл, что и в п. 1. Обозначим че-

рез p_1^* и p_2^* частоты событий A_1 и A_2 :

$$p_1^* = m/n, \quad p_2^* = m_2/m_2,$$

а через I^* — наблюденный индекс эффективности

$$I^* = p_1^*/p_2^*$$
.

Если n_1 и n_2 достаточно велики (а p_2 отделена от нуля, $p_2 \geqslant a$, a — известное положительное число), то, применив нормальную анпроксимацию биномиального закона, можно получить закон распределения I^* и, исходя из него, найти доверительные границы для I. Таким образом, получим

$$egin{aligned} I_{ ext{B}}^* &= \left[I^* + rac{t_a^2}{2an_1} - t_a \left(I^{*2} \Big(rac{1}{a} - 1 \Big) rac{1}{n_2} + I^* \Big(rac{1}{a} - I^* \Big) rac{1}{n_1} + rac{t_a^2}{4a^2n_1^2} +
ight. \\ &+ \Big(rac{1}{a} - 1 \Big) rac{1}{n_1 n_2} \Big)^{1/2}
ight] rac{1}{1 + t_a^2/n_1} \,, \quad ext{ecmi} \ I^* &< I_{ ext{max}}, \ I_{ ext{B}} &= 1 / a \ ext{(и достоверна)}, \quad ext{ecmi} \ I^* > I_{ ext{max}}, \ I_{ ext{max}} &= rac{1}{a} \Big(1 - t_a \Big(\Big(rac{1}{a} - 1 \Big) rac{1}{n_2} \Big)^{1/2} \Big)^{-1} \,; \end{aligned}$$

здесь α — уровень доверия, t_{α} — квантиль нормального распределения.

В пп. 1, 2 речь шла только об одной границе. Если известен способ нахождения нижней (верхней) границы, то верхнюю (нижнюю) границу можно найти через нижнюю (верхнюю) границу для обратного отношения $I'=1/I=p_2/p_1$. При этом условие $p_2\geqslant a$ в п. 2 заменится на условие $p_1\geqslant a$. Для нахождения доверительного интервала по формулам п. 2 потребуется условие: $p_1\geqslant a$, $p_2\geqslant b$, a и b— известные положительные числа.

3. Пусть теперь проведено n испытаний, причем каждое испытание есть пара испытаний — одно для события A_1 и другое для события A_2 . В результате этих испытаний получим n_1 — число реализаций события A_1A_2 , n_2 — то же для \overline{A}_1A_2 , n_3 — для $A_1\overline{A}_2$, n_4 — для $\overline{A}_1\overline{A}_2$ (чертой сверху обозначено противоположное событие). Пусть π_1 , π_2 , π_3 , π_4 — вероятности перечисленных выше событий соответственно. Из соотношений p_1 = $\pi_2 + \pi_4$, $p_2 = \pi_3 + \pi_4$, $I = p_1$ / p_2 получим

$$\pi_1 = 1 - Ip_2 - \pi_3, \quad \pi_2 = Ip_2 - \pi_4, \quad \pi_3 = \pi_3, \quad \pi_4 = \pi_4.$$
(3)

Таким образом, при заданном I вероятности π_i являются функциями параметров π_3 и π_4 . Тогда, согласно (1), стр. 342, случайная величина

$$\chi^{2} = \sum_{i=1}^{4} \frac{(n_{i} - \hat{\pi}_{i}n)^{2}}{n\hat{\pi}_{i}}$$

распределена асимптотически как χ^2 с одной степенью свободы. (Здесь $\hat{\pi}_i$ — оценки для π_i , вычисленные по формулам (3) с использованием в качестве значений параметров их оценки $\pi_i^* = n_3 / n$, $\pi_4^* = n_4 / n$.) Таким образом, при заданном I можно проверить по критерию χ^2 зависимость (3). Выбирая те значения I, для которых гипотеза о наличии зависимости (3) не отвергается, получим доверительное множество для I. Оно оказывается интервалом. Его границы

$$I_{ ext{\tiny B, H}} = rac{1}{1+r} igg[I^* + rac{1}{2} rac{1-\pi_3^* + \pi_4^*}{p_2^*} \, r \, \pm rac{1}{2} igg(rac{1}{4} rac{(1-p_2^*)^2}{p_2^{*2}} \, r^2 + rac{\pi_1^* \pi_2^*}{p_2^{*2}} \, r igg)^{1/2} igg] \, ;$$

здесь $I^*=p_1^*\ /\ p_2^*,\quad p_1^*=\pi_2^*+\pi_4^*,\quad p_2^*=\pi_3^*+\pi_4^*,\quad \pi_i^*=n_i\ /\ n,\quad r=t_\alpha^2\times\times(n(1-p_2^*))^{-1},\ t_\alpha$ — квантиль нормального распределения. При большом n,

пренебрегая малыми членами, получим

$$I_{ extbf{B, H}} = I^* \pm rac{t_{lpha}}{p_2^*} \left(rac{\pi_1^*\pi_2^*}{n\left(1-p_2^*
ight)}
ight)^{1/2}.$$

4. Если исследуется влияние k независимых факторов с эффективностями I_1, \ldots, I_k на вероятность событий A_1 и A_2 , то индекс эффективности суммарного влияния всех факторов выразится следующим образом:

$$I = \prod_{i=1}^{k} I_i. \tag{4}$$

В практике эпидемиологических исследований часто приходится решать вопрос о доверительной границе отношения

$$I = p_1 p_1' / (p_2 p_2'), (5)$$

где p_1 и p_2 трактуются как вероятности заболеть лицу из контрольной и опытной группы соответственно, а p_1' и p_2' — как вероятности иметь для него заданный диагноз в группе сходных заболеваний.

него заданный диагноз в группе сходных заболеваний. Если здесь предположить, что $P\{p_1'=p_1^0|p_1=p_1^0\}=1$, то нижняя доверительная граница индекса эффективности может быть вычислена по формуле $I_{\rm H}=p_{1\rm H}p_{1\rm H}'/(p_{2\rm B}p_{2\rm B}')$. Оценки для $p_{1\rm H}'$ и $p_{2\rm B}'$ даются через частоты подтверждения диагноза

Оценки для p_{1H}' и p_{2B}' даются через частоты подтверждения диагноза у заболевших с помощью лабораторных методов. Из (5) видно, что лабораторное обследование проводится в обеих группах — контрольной и опытной. Однако можно вычислить значение индекса эффективности, совпадающее с получаемым по формуле (5) на основании лабораторного обследования больных только в опытной группе:

$$I = (p_1/p_2 + p_2' - 1)/p_2'. (6)$$

Выражение (6) верно тогда, когда фактор влияет только на изучаемое заболевание. Если фактор защиты влияет также и на смежные заболевания, то для индекса эффективности устанавливается следующая зависимость:

$$I = [p_1/p_2 - I^*(1 - p_2')]/p_2',$$

где I^* — индекс эффективности неспецифического влияния исследуемого фактора.

Для установления ценности исследованного фактора защиты могут быть использованы экономические критерии. В частности, можно вычислить наименьшее допустимое значение индекса эффективности, при котором экономический выигрыш от применения данной меры будет сбалансирован с затратами по ее осуществлению: $I = p_1 c_1 / (p_1 c_1 - c_2)$, где $p_1 -$ заболеваемость людей, защищаемых данным мероприятием, c_1 — потери на одного заболевшего, c_2 — затраты на одного защищенного мероприятием в тех же единицах, что и c_1 .

Всесоюзный научно-исследовательский институт гриппа Министерства здравоохранения СССР Москва Поступило 4 XI 1971

цитированная литература

 4 С. Р. Рао, Линейные статистические методы и их применения, М., 1968. 2 Ю. К. Беляев, ДАН, 169, № 4, 755 (1966).