Академик Г. А. РАЗУВАЕВ, В. Н. ЛАТЯЕВА, А. Н. ЛИНЕВА, М. Р. ЛЕОНОВ

ТЕРМИЧЕСКИЙ РАСПАД ДИЦИКЛОПЕНТАДИЕНИЛФЕНИЛВАНАДИЯ

Ранее было показано, что при термическом распаде $(C_5H_5)_2TiR_2$, где $R=CH_3$, C_6H_5 , в растворителях, легко отдающих атом водорода, основными продуктами реакции были $(C_5H_5)_2Ti$ и два моля RH (¹). Термораспад $(C_5H_5)_2Ti(C_6^{14}H_5)_2$ в бензоле привел к образованию дициклопентадиенилтитана (с меньшим выходом, чем в предыдущих), $C_6^{14}H_6$ (45%) и $(C_6^{14}H_5)_2$ (20%). Растворитель — бензол не принимал участия в реакции (²). Единственной возможностью образования бензола был отрыв водорода фенильной группой от циклопентадиенильного кольца, что и вызвало уменьшение выхода $(C_5H_5)_2Ti$.

Можно было ожидать, что при термическом распаде дипиклопенталиенилфенилванадия, содержащего одну группу на атом переходного металла, тем более преобладающим будет образование бензола по сравнению с дифенилом. И действительно, как показали результаты данной работы, термический распад $(C_5H_5)_2VC_6H_5$ проходит аналогично $(C_5H_5)_2Ti(C_6H_5)_2$. Основными продуктами реакции без растворителя (150°, 40 час.) найдены дициклопентадиенилванадий (80-90%), бензол (60-65%) и дифенил (10-13%). Общий баланс по фенильным группам был 88%. Как и ожидалось, при распаде ванадийорганического соединения выход дифенила значительно уменьшился. Для выяснения механизма процесса были использованы соединения с меткой углерод С¹⁴ и дейтерий. Термический распад (C₅H₅)₂VC₆H₅ в бензольном растворе изучен на примерах реакций $(C_5H_5)_2VC_6^{14}H_5$ (соединение синтезировано из $(C_5H_5)_2VCl$ и $C_6^{14}H_5Li)$ в обычном бензоле и (C₅H₅)₂VC₆H₅ в бензоле, меченном С¹⁴. Реакции проводились при 150° в запаянных ампулах в течение 40 час. Разложение $(C_5H_5)_2VC_6^{14}H_5$ (активность в фенильной группе 31029 имп/мин) в обычном бензоле привело к образованию С614Н6 (активность 1468 имп/мин, что соответствует в пересчете на общую активность 61,5% $C_6^{14}H_6$). При исследовании распада $(C_5H_5)_2VC_6^{14}H_5$ в обычном бензоле, а также $(C_5H_5)_2VC_6H_5$ в С614 Н6 показано, что дифенил образуется только за счет фенильных радикалов металлоорганического соединения. Так, например, при распаде C_6 ¹⁴ H_6 дициклопентадиенилфенилванадия В (активность 4470 имп/мин) полученный дифенил в обоих случаях имел активность 30-40 имп/мин.

Чтобы однозначно ответить на вопрос об источнике водорода, необходимого для образования бензола, проведен термораспад $(C_5D_5)_2VC_6H_5$ в твердом виде при 150° *. Основным продуктом реакции был найден монодейтеробензол (масс-спектрометрия). Этот результат является прямым доказательством того, что фенильные группы отрывают атомы дейтерия от дейтерированного циклопентациенильного кольца. Высокий выход дициклопентадиенилванадия (80-90%) и в этом случае указывает на то, что C_5H_5 -кольцо теряет не один атом водорода, а дегидрирование проходит значительно глубже. Таким образом, C_5H_5 -кольцо, начавшее «терять» атомы водорода, вероятно, является более активным донором последнего, чем

^{*} $(C_5D_5)_2VC_6H_5$ синтезирован по обычной методике из $(C_5D_5)_2VCl$ и фениллития (3). Для получения хлорида использован дейтерированный циклопентадиен, спениально полученный для этой цели.

кольца сэндвич-структуры. Это подтверждается тем, что при термораспаде (С₅Н₅)₂VС₅Н₅ без растворителя образуется небольшой (~4% по весу) нерастворимый остаток, содержащий только углерод и ванадий.

Если дегидрирование циклопентадиенильного кольца проходит полностью до углерода, то для образования 60-65% бензола, найденного в опытах, требуется 13-15% исходного $(C_5H_5)_2VC_6H_5$ при условии участия одного C_5H_5 -кольца и в два раза меньше при полном дегидрировании обоих циклопентадиенильных колец. Полученные расчетные данные вполне согласуются с экспериментальными (80% выход дициклопентадиенилванадия). Это также свидетельствует о том, что процесс дегидрирования C_5H_5 -кольца не является внутримолекулярным: $(C_5H_5)_2VC_6H_5 \rightarrow (C_5H_5)_2VC_5H_4 + C_6H_6$, так как выход $(C_5H_5)_2V$ при выделении 65% бензола не мог бы достигать 80% от теории.

Донорами атомов водорода могут быть циклопентадиенильные группы, входящие в состав нестойких ванадийорганических продуктов, получающихся в результате реакции диспропорционирования дициклопентадиенилфенилванадия:

$$\begin{split} 2(C_{5}H_{5})_{2}VC_{6}H_{5} &\rightleftarrows C_{5}H_{5}V(C_{6}H_{5})_{2} + (C_{5}H_{5})_{3}V \\ &\downarrow \\ (C_{6}H_{5})_{2} + \begin{bmatrix} C_{5}H_{5}V \end{bmatrix} & (C_{5}H_{5})_{2}V + C_{5}H_{5} \end{split}$$

Так, например, из литературных данных известно (4), что $(C_5H_5)_3V$ при 125° переходит в $(C_5H_5)_2V$ с потерей одной C_5H_5 -группы, которая в исследуемой нами реакции может быть объектом атаки фенильных радикалов металлоорганического соединения. Эта схема подтверждается образованием дифенила; однако глубина этого процесса невелика (выход дифенила не превышал 10-13%). На основании полученных результатов, термический распад $(C_5H_5)_2VC_6H_5$ можно описать общей схемой:

Дициклопентадиенилванадий выделен из реакционной смеси возгонкой (температура плавления сублимата 168°) или переведен в $(C_5H_5)_2VCl_2$ действием HCl в диоксане.

Сравнивая термический распад дициклопентадиенильных соединений титана и ванадия в растворах бензола и в твердом виде, следует отметить, что в обоих случаях он проходит с разрывом σ -связи металл — фенил и без участия растворителя — бензола. Дициклопентадиенальная структура $(C_5H_5)_2M$ — устойчива к термораспаду, об этом свидетельствует высокий выход $(C_5H_5)_2$ Ті (60-70%) и $(C_5H_5)_2$ V (80-90%). Фенильные группы металлоорганического соединения переходят в бензол и дифенил. Бензол образуется за счет атомов водорода или дейтерия циклопентадиенильной группы.

Научно-исследовательский институт химии при Горьковском государственном университете им. Н. Й. Лобачевского

Поступило 19 X 1972

цитированная литература

¹ G. A. Razuvaev, V. N. Latyeva, Organomet. Chem. Rev., 23, 49 (1967).
² Г. А. Разуваев, В. Н. Латяева, Л. И. Вышинская, Тр. по химии и хим. технол., Горький, в. 3, 616 (1961).

³ Н. J. L. Meijer, M. J. Janssen, G. J. M. van der Kerk, Chem. and Ind., 1960, 119.

⁴ F. W. Siegert, H. J. L. Meijer, J. Organomet. Chem., 20, 141 (1969).