УДК 517.948

MATEMATHKA

Г. Г. КАЗАРЯН

СРАВНЕНИЕ ДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАТОРОВ И ДИФФЕРЕНЦИАЛЬНЫЕ ОПЕРАТОРЫ ПОСТОЯННОЙ СИЛЫ

(Представлено академиком В. С. Владимировым 15 V 1972)

Будем пользоваться следующими обозначениями и терминологией: $\boldsymbol{\xi}=(\xi_1,\ldots,\xi_n)$ — точка n-мерного эвклидова пространства R_n , $R_n{}^0=$ $=\left\{ \xi\colon \xi\in R_n,\ \prod_{k=1}\xi_k\neq 0
ight\};\ x=(x_1,\ldots,x_n)$ — точка n-мерного эвклидова пространства E_n ; Σ_n — целочисленная решетка точек (мультииндексов) $\alpha=(\alpha_1,\ldots,\alpha_n),\ \alpha_i\geqslant 0,\ i=1,\ldots,n.$ Как обычно, $\xi^\alpha=\xi_1^{\alpha_1}\ldots\xi_n^{\alpha_n}$, $D^\alpha=$ $=D_1{}^{lpha_1}\dots D_n{}^{lpha^n}$, где $D_k=rac{1}{i}rac{\partial}{\partial x_k}$, $k=1,\dots$, n.

Полным символом данного дифференциального оператора P(x, D) = $=\sum_{n} \gamma_{\alpha}(x) D^{\alpha}, x \in \Omega, \Omega$ — область в E_n , называют полином $P(x, \xi)$ = $=\sum_{\alpha}\gamma_{\alpha}(x)\xi^{\alpha}$ от ξ \in R_n . Здесь для каждой точки x \in Ω сумма берется по

конечному множеству $\mathfrak{A}(x) = \{\alpha : \alpha \in \Sigma_n, \gamma_\alpha(x) \neq 0\}.$

Определение 1. (см. (¹)). Говорят, что оператор $Q\left(D\right)=\sum q_{lpha}D^{lpha}$ с постоянными коэффициентами (полином $Q(\xi)$) слабее оператора $P\left(D
ight)=\sum_{\mathbf{z}}\gamma_{\mathbf{q}}D^{\mathbf{q}}$ — (полинома $Q(\xi)$) и записывают Q < P, если $\widetilde{Q}\left(\xi\right) \ / \ \widetilde{P}\left(\xi\right) \leqslant C \qquad \forall \xi \in R_{n},$

$$\widetilde{Q}(\xi) / \widetilde{P}(\xi) \leqslant C \quad \forall \xi \in R_n,$$
 (1)

где полином $\widetilde{R}(\xi)$ (называемый функцией Л. Хёрмандера) для данного полинома $R(\xi)$ определяется так:

$$\widetilde{R}\left(\xi
ight)^{2}=\sum_{|\mu|\geqslant0}\mid R^{(\mu)}\left(\xi
ight)\mid^{2},\quad R^{(\mu)}\left(\xi
ight)=D^{\mu}R\left(\xi
ight),$$

Определение 2. (см. (1)). Говорят, что дифференциальный оператор P(x, D) (полином $P(x, \xi)$) имеет постоянную силув Ω если для любых фиксированных точек $x, y \in \Omega$

$$\widetilde{P}(x, \xi) / \widetilde{P}(y, \xi) \leqslant C_{x, y} \quad \forall \xi \in R_n.$$
 (2)

 $ec{P}(x,\xi)^2 = \sum_{|\mu|\geqslant 0} |D^\mu_\xi P(x,\xi)|^2$ — функция Л. Хёрмандера.

Определение 3. Характеристическим многогранником (х.м.) для данного набора мультииндексов $\mathfrak{A} = \{\alpha^k\}_i^N$ называется наименьший выпуклый многогранник в Σ_n , содержащий все точки $\alpha^{\lambda} \subseteq \Sigma_n$, $k=1,\ldots,N,$ х.м. для данного полинома $P(x,\,\xi)=\sum_a \gamma_a(x)\xi^a$ определяется как х.м. набора $\mathfrak{A}(x)=\{\alpha\colon \alpha\in\Sigma_n,\,\gamma_\alpha(x)\neq 0\}$.

Определение 4. Х.м. Я называется полным, если Я имеет вершины в начале координат и на всех осях координат Σ_n . Полный х.м. 🛪 называется правильным (вполне правильным (в.п.)), если все координаты внешних нормалей (n-1)-мерных некоординатных граней $\mathfrak R$ неотрицательны (положительны).

Л. Хёрмандеру (1) принадлежит следующий результат: однородный полином $P(\xi)$ порядка m сильнее любого полинома $Q(\xi)$ порядка не выше m тогда и только тогда, когда $P(\xi)$ эллиптичен, т. е. из $P(\xi) = 0$ следует $\xi = 0$.

Л. Р. Волевич и С. Г. Гиндикин дали в (2) необходимое и достаточное условие того, чтобы многочлен $P(\xi)$ с правильным х.м. $\Re(P)$ был сильнее любого многочлена $Q(\xi)$ с х.м. $\Re(Q) = \Re(P)$.

Здесь, опираясь на результаты В. П. Михайлова (3) и наши результаты

(4, 5), мы решаем следующие задачи:

I. Для данного пабора мультииндексов $\mathfrak{A} = \{\alpha^h\}_i^N$ с произвольным х.м. \mathfrak{R} найти необходимые и достаточные условия на коэффициенты $\{\gamma_k\}_i^N$, что-

бы полином
$$P\left(\xi\right)=\sum_{k=1}^{N}\gamma_{k}\xi^{a^{k}}$$
 был сильнее любого полинома $Q\left(\xi\right)=\sum_{k=1}^{N}q_{k}\xi^{a^{k}}.$

II. Для данного полинома $P(\xi)$ с произвольным х.м. $\mathfrak N$ описать множество полиномов $\{Q(\xi)\}$, более слабых, чем $P(\xi)$.

III. Найти алгебраические условия на полный символ $P(x, \xi)$, чтобы

оператор P(x, D) с произвольным х.м. $\Re(P)$ имел постоянную силу.

Задача І решается в общем виде. Ее решение для мультииндексов \mathfrak{A} с правильным х.м. получено в (2). Задачи ІІ и ІІІ решаются в общем виде в отношении характеристических многогранников, но при некоторых ограничениях (менее жестких, чем в (2)) на характер полиномов $P(\xi)$ и $P(x, \xi)$.

1°. Для формулировки полученных результатов нам необходимы сле-

дующие определения.

Пусть $\hat{\mathfrak{N}}$ — полный х.м. в Σ_n . Обозначим через \mathfrak{R}_i^k , $i=1,\ldots,M_k'$; $k=1,\ldots,M_k'$

 $=0, 1, \ldots, n-1, k$ -мерные грани х.м. \Re .

Определение 5. Грань \Re_i^k , $i=4,\ldots,M_k$; $k=0,\ldots,n-1$, х.м. \Re назовем вполне правильной (в.п.), если среди (n-1)-мерных, опорных к \Re , гиперплоскостей, содержащих грань \Re_i^k и не содержащих граней размерности больше k, существует гиперплоскость, все координаты внешней нормали которой положительны. В дальнейшем эту нормаль будем называть внешней нормалью грани \Re_i^k .

Пусть
$$\mathfrak{N}(P)-\mathbf{x}$$
.м. многочлена $P\left(\xi\right)=\sum_{\alpha}\gamma_{\alpha}\xi^{\alpha}.$

Определение 6. Грань \mathfrak{R}_i^k , $1 \leq i \leq M_k'$; $0 \leq k \leq n-1$, х.м. $\mathfrak{R}(P)$ полинома $P(\xi)$ назовем P-регулярной, если полином $P^{i,\,k}(\xi) = \sum_{\alpha \in \mathfrak{R}_i^k} \gamma_\alpha \xi^\alpha$

не обращается в нуль в $R_n^{(0)}$.

Следующее предложение дает решение задачи I.

T е о р е м а 1. Пусть задан набор мультииндексов $\mathfrak{A} = \{a^k\}_{i}{}^N$ с х.м. \mathfrak{R} .

Полином
$$P\left(\xi\right)=\sum_{k=1}^{N}q_{k}\xi^{a}$$
 сильнее любого полинома $Q\left(\xi\right)=\sum_{k=1}^{N}q_{k}\xi^{a^{k}}$

тогда и только тогда, когда все в.п. грани х.м. Я Р-регулярны.

Введем далее следующие обозначения: для данной точки $\alpha \in \Sigma_n$ положим

$$D\alpha = \{\beta : \beta \in \Sigma_n, \ 0 \leq \beta_i \leq \alpha_i, \ i = 1, \ldots, n\};$$

для набора $\mathfrak{A}=\{\alpha^k\}$ с х.м. \mathfrak{N} положим $D\mathfrak{A}=\bigcup\limits_{\alpha^k\in\mathfrak{N}}D\alpha^k;$ через $\widetilde{\mathfrak{N}}$ обозначим х.м. набора $D\mathfrak{A}_{\bullet}$

2 3ar. 1529, T. 208, N. B

Очевидно, что: а) $\mathfrak{R} \subseteq \widetilde{\mathfrak{R}}$; б) если $\mathfrak{R}-$ правильный многогранник, то $\widetilde{\mathfrak{R}} = \mathfrak{R}$; в) в.п. грани \mathfrak{R} и $\widetilde{\mathfrak{R}}$ совпадают.

Итак, с каждым полиномом $P(\xi)$ мы будем связывать х.м. \Re и $\widetilde{\Re}$ с совпадающими в.п. гранями.

Пусть задан полином $P(\xi)$ с х.м. \mathfrak{N} и $\widetilde{\mathfrak{N}}$, причем некоторая в.п. (n-1)-мерная грань $\mathfrak{N}_{i_0}^{n-1}$ х.м. \mathfrak{N} ($\widetilde{\mathfrak{N}}_{i_0}^{n-1}$ х.м. $\widetilde{\mathfrak{N}}$) P-нерегулярна. Пусть $\lambda=(\lambda_1,\ldots,\lambda_n)$ — внешняя нормаль грани $\mathfrak{N}_{i_0}^{n-1}\equiv\widetilde{\mathfrak{N}}_{i_0}^{n-1}$. Тогда для всех точек $\alpha \in \widetilde{\mathfrak{N}}_{i_0}^{n-1}$ (λ,α) = $\sum_{k=1}^n \lambda_k \alpha_k = d>0$, а для точек $\alpha \in \widetilde{\mathfrak{N}} \setminus \widetilde{\mathfrak{N}}_{i_0}^{n-1}$ (λ,α) < d.

Положим $d_{\lambda}=d_{\lambda}\{P^{(\mu)}(\xi)\}=\max{(\lambda,\alpha)}$, причем максимум берется по тем $\alpha\in\widetilde{\mathfrak{N}}\setminus\widetilde{\mathfrak{N}}_{i_0}^{n-1}$, для которых $\sum_{|\mu|\geqslant 0}|\gamma_{\alpha,\mu}|\neq 0$, где $\{\gamma_{\alpha,\mu}\}$ — коэффициенты полинома $P^{(\mu)}(\xi)=\sum_{\alpha}\gamma_{\alpha,\mu}\xi^{\alpha}$. Через $P_{\lambda\lambda}^{i_0,n-1}(\xi)$ обозначим ту часть многочлена $P(\xi)$, для мультииндексов α которой $(\lambda,\alpha)\leqslant d_{\lambda}$, $(\lambda,\alpha)+d\geqslant 2d_{\lambda}$, $\widetilde{\mathfrak{N}}^*(P)=\{v: v\in\widetilde{\mathfrak{N}}, (\lambda,v)\leqslant d_{\lambda}\}$.

Следующее предложение дает решение задачи II при некоторых достаточно общих предположениях.

Теорема 2. Пусть многочлен $P(\xi)$ удовлетворяет одному из следующих условий: 1) все в.п. грани х.м. $\widetilde{\mathfrak{N}}(P)$ P-регулярны или 2) все в.п. грани х.м. $\widetilde{\mathfrak{N}}(P)$, за исключением одной (n-1)-мерной грани $\widetilde{\mathfrak{N}}_{i_n}^{n-1}$, P-регулярны, а грань $\widetilde{\mathfrak{N}}_{i_0}^{n-1}$ не является P-регулярной, причем если $P^{i_0,\,n-1}(\xi^0)=0$ для некоторой точки $\xi^0\in R_n^{(0)}$, то

2a)
$$\sum_{|\mu| \geqslant 0}^{\infty} |[P_{\lambda}^{(\mu)}(\xi^{0})]^{i_{0}, n-1}|^{2} \neq 0;$$

2б) в некоторой окрестности точки €0

$$K(\xi) = \overline{P}^{i_0, n-1}(\xi) \cdot P_{\lambda\lambda}^{i_0, n-1}(\xi) + P^{i_0, n-1}(\xi) \cdot \overline{P}_{\lambda\lambda}^{i_0, n-1}(\xi) \geqslant 0;$$

2в) полином $P^{i_0,\;n-1}(\xi)$ представляется в вид $oldsymbol{e}$

$$P^{i_0, n-1}(\xi) = \mathcal{P}^{i_0, n-1}(\xi) \cdot r(\xi),$$

где $\mathscr{P}^{i_0,\;n-1}(\xi)$ не обращается в нуль в $R_n^{(0)}$.

Тогда в случае 1) любой полином $Q(\xi)$ с x.м. $\widetilde{\mathfrak{N}}(Q) \subseteq \widetilde{\mathfrak{N}}(P)$ слабее $P(\xi)$ u, если $\widetilde{\mathfrak{N}}(Q) \nsubseteq \widetilde{\mathfrak{N}}(P)$, то $P(\xi)$ u $Q(\xi)$ не сравнимы. B случае 2), 2a), 2b) любой полином $Q(\xi)$ с x.м. $\widetilde{\mathfrak{N}}(Q) \subseteq \widetilde{\mathfrak{N}}^*(P)$ слабее $P(\xi)$. B случае 2), 2a), 2b), 2b), если x.м $\widetilde{\mathfrak{N}}(Q) \subseteq \widetilde{\mathfrak{N}}(P)$, $Q(\xi)$ представляется b виде $D(\xi) = D(\xi) + \sum_{k=1}^{M} q_k(\xi) \cdot r(\xi)$, где $\widetilde{\mathfrak{N}}(Q_0) \subseteq \widetilde{\mathfrak{N}}^*(P)$, то полином $D(\xi)$ слабее полинома $D(\xi)$.

Заметим, что любой полином $Q(\xi)$ с х.м. $\widetilde{\Re}(Q) \subseteq \widetilde{\Re}^*(P)$ можно представить в виде $Q(\xi) = Q_0(\xi) + \sum_{k=1}^M Q_k(\xi)$, где $\widetilde{\Re}(Q_0) \subseteq \widetilde{\Re}^*(P)$, а для всех мультинидексов α полинома $Q_k(\xi)$, $k=1,\ldots,M$, $d_k<(\lambda,\alpha)=r_k< d$. Представление $Q_k(\xi)=q_k(\xi)\cdot r(\xi)$ в условии теоремы означает, что полиномы $Q_k(\xi)$, $k=1,\ldots,M$, обращаются в нуль во всех тех точках $\xi \in R_n^{(0)}$, в которых $P^{i_0,n-1}(\xi)=0$ (см. также условие $2\mathbf{B}$). Это последнее условие необходимо, чтобы $Q(\xi)$ был слабее $P(\xi)$.

На примерах можно показать, что условия 2a), 2b) существенны, чтобы $Q(\xi)$ был слабее $P(\xi)$. 2° . Перейдем к задаче III. Для данного полинома $P(x, \xi)$ с множеством мультииндексов $\mathfrak{A}(x)$ через $\widetilde{\mathfrak{R}}(x)$ обозначим х.м. набора $D\mathfrak{A}(x)$, где

$$D\mathfrak{A}(x) = \{\beta \colon \beta \in \Sigma_n, \ 0 \leqslant \beta_i \leqslant \alpha_i, \ i = 1, \dots, n, \ \forall \alpha \in \mathfrak{A}(x) \}.$$

Теорема 3. Пусть полином (от ξ) $P(x, \xi)$ удовлетворяет условию а), если все в.п. грани х.м. $\widetilde{\mathfrak{R}}(x)$ P-регулярны, и условиям а), б), в), если в. п. (n-1)-мерная грань $\widetilde{\mathfrak{R}}_{i_0}^{n-1} \equiv \mathfrak{R}_{i_0}^{n-1}$ не является P-регулярной.

Torða oператор P(x,D) имеет постоянную силу в Ω .

Здесь:

- а) х.м. $\widetilde{\mathfrak{N}}(x)$ не зависит от точки $x \in \Omega$;
- б) если в.п. (n-1)-мерная грань $\widehat{\mathfrak{R}}_{i_0}^{n-1}$ (с внешней нормалью λ) х.м. $\widehat{\mathfrak{R}}$ не является P-регулярной, то $d_{\lambda}(x) \equiv d_{\lambda} \equiv \max_{x \in \Omega} d_{\lambda}(x)$ и полином $P^{i_0, n-1}(x, \xi)$ имеет вид

$$P^{i_0, n-1}(x, \xi) = \mathcal{P}^{i_0, n-1}(x, \xi) \cdot r(\xi),$$

где $\mathcal{P}^{i_0, n-1}(x, \xi)$ не обращается в нуль ни в одной точке $(x, \xi), x \in \Omega, \xi \in \mathbb{R}^{(9)}_n$;

в) если
$$P^{i_0,\;n-1}(x,\xi^0)=0\;\partial$$
ля $\xi^0\in R_n^{\;(0)}$, то

B. 1)
$$\sum_{|\mu| \geqslant 0} |[P_{\lambda}^{(\mu)}(x,\xi)]^{i_0, n-1}|^2 \neq 0 \quad \forall x \in \Omega,$$

в. 2) в некоторой окрестности точки ξ^0

$$K(x,\xi) = \tilde{P}^{i_0, n-1}(x,\xi) \cdot P^{i_0, n-1}_{\lambda\lambda}(x,\xi) + P^{i_0, n-1}(x,\xi) \cdot \bar{P}^{i_0, n-1}_{\lambda\lambda}(x,\xi) \geqslant 0,$$

где для каждой фиксированной точки $x \in \Omega$ $d_{\lambda}(x)$, $P_{\lambda}^{(\mu)}(x, \xi)$, $K(x, \xi)$ определяется, как в 1° для полинома $P(x, \xi)$ с постоянными коэффициентами.

Условие а) необходимо, а условия б), в) — существенны, для того чтобы оператор P(x, D) имел постоянную силу.

Следующее предложение дает условия, при которых существует константа C>0 такая, что $C_{x,y}\leqslant C$ $\forall x,\ y\in\Omega$ в определении 2. В этом случае полином $P(x,\ \xi)$ будет сильнее любого полинома $Q(\xi)$ с постоянными коэффициентами и с х.м. $\widetilde{\mathfrak{N}}(Q)\subseteq\widetilde{\mathfrak{N}}(P)$. Полином $P(x,\ \xi)$, обладающий этим свойством, будем называть полиномом равномерно постоянной силы.

T е о р е м а 4. Пусть заданный дифференциальный оператор P(x, D) удовлетворяет следующим условиям:

а) $\widetilde{\mathfrak{R}}(x) \equiv \mathfrak{R}$, коэффициенты $\{\gamma_{\alpha}(x)\}$ определены и ограничены в ограниченной области Ω , причем коэффициенты $\gamma_{\alpha}(x)$, мультииндексы а которых лежат на в.п. гранях $\widetilde{\mathfrak{R}}$, равномерно непрерывны в Ω и удовлетворяют условию

 $0 < \sigma \le |\gamma_{\alpha}(x)| \le M \quad \forall x \in \Omega;$

б) все в.п. грани х.м. $\widetilde{\Re} P$ -регулярны. Тогда оператор P(x,D) имеет равномерно постоянную силу в Ω .

Ереванский государственный **унив**ерситет

Поступило 25 IV 1972

ПИТИРОВАННАЯ ЛИТЕРАТУРА

⁴ Л. Хёрмандер, Линейные дифференциальные операторы с частными производными, М., 1965. ² Л. Р. Волевич, С. Г. Гиндикин, Матем. сборн., 75 (117), № 3, 400 (1968). ³ В. П. Михайлов, ДАН, 151, № 2 (1963). ⁴ Г. Г. Казарян, Тр. Матем. инст. им. В. А. Стеклова АН СССР, 105, 66 (1969). ⁵ Г. Г. Казарян, Дифференциальные уравнения, 5, № 5, 911 (1969).