УДК 547.518

химия

Л. А. КАРАМЫШЕВА, Е. С. БАЛЕНКОВА, Н. Б. КУПЛЕТСКАЯ

ОСНОВНОСТЬ РЯДА ЦИКЛОАЛКАНОНОВ И БИЦИКЛО-(n, 1,0)-АЛКАНОНОВ-2

(Представлено академиком Б. А. Казанским 4 VII 1972)

Электронное строение циклопропана таково, что молекулярные орбитали, образующие цикл, имеют больший *p*-характер, чем в углерод-углеродных связях насыщенных молекул (¹). Эта особенность обусловливает возможность сопряжения трехчленного цикла с другими ненасыщенными группировками, находящимися в α-положении.

Сопряжение циклопропанового кольца с карбонильной группой ярко проявляется в химических, фотохимических и каталитических реакциях α -циклопропилкетонов ($^{2-7}$). Так, например, каталитическое гидрирование этих систем, так же как и ионное восстановление, протекает легко и затрагивает преимущественно наиболее сопряженную связь трехуленного цикла:

С другой стороны, соседство с трехчленным циклом оказывает влияние на карбонильную группу, что проявляется, например, в увеличении основных свойств α -циклопропилкетонов. Так, по данным Леви и сотрудников (8), константа протонирования метилизопропилкетона составляет -7,4 ед. р $K_{\rm BH}^+$, тогда как для метилциклопропилкетона это значение увеличивается до -5,9.

В настоящей работе была поставлена цель — количественно оценить влияние циклопропанового кольца, сопряженного с карбонильной группой. на основные свойства последней в ряду бицикло-(n, 1, 0)-алканонов-(n, 1, 0)-алканов-(n, 1, 0)-алканов-(n, 1, 0)-алканов-(n, 1, 0)-алканов-(

В сильных кислотах органические основания (В) протонируются с образованием кислот, сопряженных с данным основанием (ВН+):

$$B + H^+ \rightleftharpoons BH^+. \tag{1}$$

Степень протонирования может быть определена из спектральных данных в соответствии с уравнением

$$\frac{|\mathrm{B}|}{[\mathrm{BH}^+]} = \frac{\varepsilon_{\mathrm{BH}^+} - \varepsilon}{\varepsilon - \varepsilon_{\mathrm{B}}}, \qquad (2)$$

где $\epsilon_{\rm B},\ \epsilon_{\rm BH}^+$ и ϵ — молекулярные экстинкции непротонированного, полностью протонированного кетонов и кетона в изучаемом растворе, а величины в скобках — соответствующие концентрации.

Константу протонирования находят из уравнений (1), (2) и выражают следующим образом:

$$pK_{BH+} = H_m - \lg \frac{[B]}{[BH^+]},$$
 (3)

где H_m — функция кислотности используемого растворителя (рН, $H_{\rm o}$, $H_{\rm A}$ и т. д.).

Между различными функциями кислотности H_m существует линейная зависимость (°), например $H_m = mH_0$, где $m = \operatorname{tg} \alpha$ (α — угол наклона прямой уравнения (3)). Для идеальных оснований Гаммета m = 1.

Синтез исследуемых бицикло-(n, 1, 0)-алканонов-2 был осуществлен по методу Даубена $\binom{10}{2}$, исходя из соответствующих циклоолефинов:

$$(H_2C)_{n-2}$$
 $\xrightarrow{N-6 \text{ромсук}^-}$ $(H_2C)_{n-2}$ $\xrightarrow{NaHCO_3}$ $(H_2C)_{n-2}$ $\xrightarrow{CrO_3}$ $(H_2C)_{n-2}$ \xrightarrow{OH} $n = 4, 5, 7, 10$

Константы полученных бицикло-(n, 1, 0)-алканонов-2 представлены в табл. 1. Семи-двенадцатичленные кетоны были синтезированы нами, их константы соответствовали литературным данным.

Концентрации растворов серной кислоты (55-95%) определялись по плотности. Растворы кетонов в серной кислоте (концентрация 10^{-4} M) приготовлялись непосредственно перед спектральными измерениями добавлением 1 мл спиртового раствора кетона (концентрация 10^{-3} M) к 9 мл раствора кислоты при охлаждении до 0° . Спектры поглощения измеряли на приборе «Cary-15».

Определение констант протонирования исследуемых нами циклоалканонов осуществлялось методом, изложенным в работе Кэмпбелла и Эдварда (12); в случае бицикло-(n, 1, 0)-алканонов-2 применялось также видо-изменение этого метода, описанное Стюартом и Грэнжером (13). Значения р $K_{\rm BH}^+$ бициклоалканонов, полученные обоими методами, различались не более чем на $\pm 0,2$ ед. р $K_{\rm BH}^+$, что не превышало ошибок измерения.

Таблица 1

	Кетон		n_D^{20}	Лит. да		
№ п.п.		Т. кип., °С (мм)		т. кин., С (мм)	n_D^{25}	Источник
1	Бицикло-(4,1,0)-геп- танон-2	72—75(8)	1,4911	85-85,5(10)	1,4878	(10)
2	Бицикло-(5,1,0)-ок- танон-2	88-89(11)	1,4928	77(10)	1,4907	(11)
3	Бицикло-(7,1,0)-де- канон-2	58,5-60,0(1)	1,4943			
4	Бицикло-(10,1,0)-три- деканон-2	7880(0,2)	1,4961			

Примечание. При восстановлении № 3 по методу Кижнера была получена смесь, состоящая из 40% пис-и 60% транс-бицикло-(7.1.0)-декана. Если считать, что в условиях реакции Кижнера не происходит изомерации, то № 3 также представляет собой смесь 60% транс-ји 40% цис-изомера, При восстановлении № 4 дал чистый транс-бицикло-(10,1,0)-тридекан.

Для примера на рис. 1-3 приведены спектры бицикло-(7, 1, 0)-деканона-2 в серной кислоте различной концентрации и определение его константы основности.

В табл. 2 представлены определенные нами характеристики исследуемых кетонов, полученные из двух-трех параллельных определений. Как показывают данные этой таблицы, величина *m* во всех случаях близка к единице, т. е. кетоны удовлетворительно описываются функцией кислотности Гаммета.

Из данных табл. 2 можно сделать вывод, что наблюдается повышение основности карбонильного кислорода для циклоалканонов со средним размером кольца (C_8 — C_{10}) и снова уменьшение основности при переходе к большим циклам (C_{12}). Подобное явление объясняется, по-видимому, структурными особенностями восьми-десятичленных циклических кетонов.

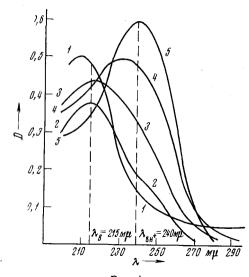
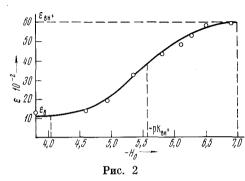



Рис. 1. У.-ф. спектры бицикло-(7,1,0)-деканона-2 в серной кислоте (концентрация кетона 10^{-4} M, толщина слоя 1 см): I = 54,5%; 2 = 64,5; 3 = 67,5; 4 = 73,0; 5 = 79,5

Рис. 2. Зависимость молярного коэффициента поглощения бицикло-(7,1,0)-деканона-2 от функции кислотности Гаммета при длине волны 240 им

Рис. 3. Зависимость степени протонирования от функции кислотности Гаммета для бицикло-(7,1,0)-деканона-2

Рис. 1

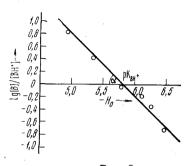
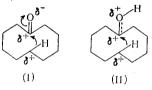



Рис. 3

Протонированную форму циклического кетона можно представить в виде следующего мезомерного катиона $(^{15})$:

$$(CH_2)_{n-1}$$
 $C = OH$ $CH_2)_{n-1} + C = OH$

Благодаря особенностям строения соединений со средним размером кольца (16, 17) возможно трансаннулярное участие противоположно лежащих атомов водорода в поляризации карбонильной группы, т. е. строение исходной молекулы (I) благоприятствует процессу протонирования. Кроме того, в отличие от кетонов с большим и меньшим числом звеньев, в данном ряду имеется также дополнительная возможность стабилизации протонированной формы (II)

Поэтому протонирование циклооктанона, циклононанона и циклодеканона облегчено по сравнению с циклогексаноном, циклогептаноном и циклодеканоном.

Бицикло-(n, 1, 0)-алканоны-2, содержащие трехчленный цикл, сопряженный с карбонильной группой, показывают увеличение основности кар-

№ п.п.	Циклоалканон	$-pK_{BH+}$	m	Бицикло-(n,1,0)-ал- канон-2	-pK _{BH+}	m	ΔpK _{BH} +
1	Циклогексанон	6,8	0,9	Бицикло-(4,1,0)-	5,5	1,0	1,3
2	Циклогептанон	6,5	0,9	гептанон-2 Бицикло-(5,1,0)- октанон-2	5,5	1,0	1
3 4	Циклооктанон Циклононанон	$\begin{array}{c c} 6,2 \\ 6,3 \end{array}$	$\frac{1}{1}, 0$	Бицикло-(7,1,0)-	5,8	1.0	0,5
5	Циклодеканон	6,2	1,0	деканоп-2	,		,
.6	Циклододеканон	7,0	1,0	Бицикло-(10,1,0)- тридеканон-2	5,4	0,9	1,6

Примечание. По данным Кэмпбелла и Эдварда (12), N2 1. 2, 3, имеют константы протонирования —6,8; —6,6; —6,2 соответственно. По данным Арнетта и сотрудников (14), N3 5, имеют константы протонирования —6,3 и —6,8 соответственно.

бонильного кислорода по сравнению с циклоалканонами. Однако на основные свойства бицикло-(n, 1, 0)-алканонов-2 влияет как эффект сопряжения с трехчленым циклом, так и строение большого кольца. Изучение в тех же условиях протонирования простых циклических кетонов позволило нам оценить влияние размера кольца на основные свойства карбонильной группы. Если предположить, что в бициклических кетонах это влияние сохраняется, то по разности констант протонирования бициклоалканона и соответствующего циклоалканона ($\Delta p K_{\rm EH}^+$) можно оценить вклад эффекта сопряжения трехчленного цикла с карбонильной группой в константу основности бициклических кетонов.

Так, для бицикло- (4, 1, 0)-гептанона-2 и бицикло- (10, 1, 0)-тридеканона-2 эта разность имеет наибольшие значения, тогда как для бицикло(7, 1, 0)-деканона-2 сна значительно уменьшается. Этот факт свидетельствует о том, что в случае двух первых кетонов имеется большая возможность сопряжения кетонной группы с трехчленным циклом. Девятичленное кольцо представляет собой довольно жесткую структуру (16), не позволяющую осуществляться максимальному перекрыванию электронных
облаков двух соседних ненасыщенных группировок. Эта конформационная особенность средних циклов проявляется также и в свойствах α, β-непредельных кетонов, которые склонны к превращению в изомеры с изолированной β, γ-двойной связью (18).

Авторы выражают благодарность Л. Н. Голубковой за измерение у.-ф.

Московский государственный университет им. М. В. Ломоносова

Поступило. 4 VII 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ C. A. Coulson, W. E. Moffitt, Phil. Mag., 40, 1 (1949). ² Б. А. Казанский, М. Ю. Лукина, Л. Г. Сальникова, Изв. АН СССР, ОХН, 1957, 1401. ³ А. L. Schultz, J. Org. Chem., 36, 383 (1971). ⁴ R. Fraisse-Jullien et al., Bull. Soc. chim. France. 1968, 4444. ⁵ W. G. Dauben, G. W. Shaffer, Tetrahedron Letters, № 45, 4415 (1967). ⁶ W. G. Dauben, E. J. Deviny, J. Org. Chem., 31, 3794 (1966). ⁶ W. G. Dauben, L. Schutte et al., J. Org. Chem., 34, 2512 (1969). ⁶ G. C. Levy, J. D. Gargiolli, W. Rucela, J. Am. Chem. Soc., 92, 6238 (1970). ⁶ K. Yates, R. McClelland. J. Am. Chem. Soc., 89, 2686 (1967). ¹⁰ W. G. Dauben, G. H. Berezin, J. Am. Chem. Soc., 85, 468 (1963). ¹¹ W. G. Dauben, G. H. Berezin, J. Am. Chem. Soc., 85, 468 (1963). ¹¹ W. G. Dauben, G. H. Berezin, J. Am. Chem. Soc., 89, 3449 (1967). ¹² H. J. Campbell, J. T. Edward, Canad. J. Chem., 38, 2109 (1960). ¹³ R. Stewart, M. R. Granger, Canad. J. Chem., 39, 2509 (1961). ¹⁴ E. M. Arnett, R. P. Quirk, J. W. Larsen, J. Am. Chem. Soc., 92, 3977 (1970). ¹⁵ Г. Ф. Терещенко, Т. И. Смирнова и др., Журн. орг. хим., 8, 236 (1972). ¹⁶ R. F. Bryan, J. D. Dunitz, Helv. chim. acta, 43, 3 (1960). ¹ⁿ E. Huber-Buser, J. D. Dunitz, Helv. chim. acta, 43, 760 (1960). ¹৪ N. Heap, G. H. Whith am, J. Chem. Soc., B, 1966, 164.