УДК 517.946

MATEMATHKA

Г. Д. КАРАТОПРАКЛИЕВ (Болгария)

ОБ ОДНОМ УРАВНЕНИИ СМЕШАННОГО ТИПА В МНОГОМЕРНЫХ ОБЛАСТЯХ

(Представлено академиком М. А. Лаврентьевым 15 VIII 1972)

Пусть G — ограниченная область m-мерного пространства E_m точек $x=(x_1,\ldots,x_m)$ с кусочно-гладкой (m-1)-мерной границей Γ , разбиваемой плоскостью $x_m=0$ на две области: $G_1=G\cap \{x_m>0\}$ и $G_2=G\cap \{x_m<0\}$, причем $G\cap \{x_m=0\}$ — односвязная область на плоскости $x_m=0$. Обозначим через Σ и S те части Γ , где $x_m\geqslant d$ и $x_m< d$ соответственно, а через Σ_1 ту часть Σ , где $d\leqslant x_m<0$ ін $x_m< d=0$.

Рассмотрим в области G оператор

$$Lu = u_{x_{1}x_{1}} + k (x_{m}) \sum_{i=2}^{m} u_{x_{i}x_{i}} + \alpha u_{x_{m}} + c (x) u,$$

 $k(x_m)$ — трижды непрерывно дифференцируемая на отрезке $\Delta =$ $k(x_m) > 0$ при $x_m > 0$, $k(x_m) < 0$ при $x_m < 0$, k(0) = 0 и $k'(x_m) > 0$ при $x_m \in G$ (Сх.) — непрерывная в G функция. Пусть $S_0 = G \cap \{x_m = d\}$. Будем предполагать, что $S = S_1 \cup S_2$, где $S_1 - S_2$ где $S_2 - S_3 - S_4$ где $S_3 - S_4$ где $S_4 - S_4$ где $S_3 - S_4$ где $S_4 - S_4$ где $S_4 - S_4$ где $S_5 - S$

боковая поверхность, а S_2 — нижнее основание цилиндра $S_0 \times [d, h_1]$.

Требустся найти в области G решение уравнения

$$Lu = f(x), \tag{1}$$

удовлетворяющее граничному условию

$$u = 0$$
 Ha Γ . (2)

Обозначим через C_L множество всех функций $u(x) \subseteq C(\overline{G}) \cap C^2(G)$, первые частные производные u_{x_i} , $i=1,\ldots,m$, которых интегрируемы с квадратом на G и ее границе Γ , и удовлстворяющих условию $\;\;(2)$. Пусть $u(x) \in C_L$ и $q(x_m) \in C^1(\Delta)$ — пека произвольная функция. Интегрированием по частям получаем

$$\int_{G} qu_{x_{m}} Lu \, dx = -\frac{1}{2} \int_{G} (qc)_{x_{m}} u^{2} \, dx + \frac{1}{2} \int_{G} \left\{ q'u_{x_{i}}^{2} + (qk)' \sum_{i=2}^{m-1} u_{x_{i}}^{2} + \left[2q\alpha - (qk)' \right] u_{x_{m}}^{2} \right\} dx + \frac{1}{2} \int_{\Gamma} q \left(-n_{m} u_{x_{i}}^{2} - kn_{m} \sum_{i=2}^{m-1} u_{x_{i}}^{2} + kn_{m} u_{x_{m}}^{2} + 2n_{1} u_{x_{i}} u_{x_{m}} + 2k \sum_{i=2}^{m-1} n_{i} u_{x_{i}} u_{x_{m}} \right) ds = J_{1} + J_{2} + J_{3},$$
(3)

где $n=(n_1,\ldots,n_m)$ — единичный вектор внешней нормали к Γ . Выбираем $q=\epsilon x_m+\delta$ в Δ , где $\epsilon>0$ — фиксированная, а $\delta>0$ — пока

произвольная постоянная. Для J_2 получаем

$$J_2=rac{1}{2}\int\limits_{\mathcal{C}}\left\{ \,arepsilon u_{x_1}^2+\left(arepsilon k+\,q k'
ight)\sum_{i=2}^{m-1}u_{x_i}^2+\left[\,q\left(2lpha-k'
ight)-arepsilon k\,
ight]u_{x_m}^2
ight\} dx.$$

Пусть $\alpha > \sup_{x_m \in \Delta} k'(x_m) / 2$. Постоянная δ выбирается столь большая, что q > 0, $q(2\alpha - k') - \epsilon k \geqslant \mu = \mathrm{const} > 0$ и $\epsilon k + qk' \geqslant \mu_i = \mathrm{const} > 0$ в Δ . Тогда

$$J_2 \geqslant C_1 \int_G \sum_{i=1}^m u_{x_i}^2 dx,$$

где $C_1 = \min (\varepsilon, \mu, \mu_1)$. Так как u = 0 на Γ , то $u_{x_i} = N(x)n_i$, $i = 1, \ldots, m$, и, следовательно,

$$J_3 = rac{1}{2} \int_{\Sigma} N^2 q n_m \left(n_1^2 + k \sum_{i=2}^m n_i^2 \right) ds - rac{1}{2} \int_{S_2} N^2 q k \ ds.$$

Если

$$n_{m} \geqslant 0$$
 на Σ , $n_{1}^{2} + k(x_{m}) \sum_{i=2}^{m} n_{i}^{2} > 0$ на Σ_{1} , (4)

то $J_3 \geqslant 0$. Если $(qc)_{x_m} \leqslant 0$ в \overline{G} , то $J_4 \geqslant 0$. Из (3) следует, что u=0, если Lu=0. Таким образом, имеет место следующая

Tеорема 1. Если $\alpha > \sup_{x_m \in \Delta} k'(x_m)/2$, Σ и Σ , удовлетворяют условиям

- (4) и функция c(x) удовлетворяет условию $(qc)_{x_m} \le 0$ в \overline{G} , то задача (1),
- (2) имеет не более одного решения $u \in C_L$.

Обозначим через L^+ оператор, сопряженный к L:

$$L^{+}u = u_{x_{1}x_{1}} + k(x_{m}) \sum_{i=2}^{m} u_{x_{i}x_{i}} + \alpha^{+}u_{x_{m}} + c^{+}u,$$

где $\alpha^{+} = 2k' - \alpha$, $c^{+} = k'' + c$.

Пусть $C^2(\overline{G}, \Gamma)$ — множество всех дважды непрерывно дифференцируемых в \overline{G} функций, удовлетворяющих условию (2), а $W_2^2(zp)$ — замыкание этого множества в норме $W_2^2(G)$. Легко видеть, что граничное условие, сопряженное к (2), имеет вид v=0 на Γ (в работе используется терминология, принятая в (1)). Пусть $f \in L_2(G)$.

Функция $u \in L_2(G)$ называется слабым решением задачи (1), (2), если

$$(u, L^+v)_0 = (f, v)_0$$

для любого $v \in W_2^2(\mathfrak{p})$ $((\cdot, \cdot)_{\mathfrak{g}} - \mathsf{скалярное}$ произведение в $L_2(G)$).

Пусть $v \in \dot{C}^2(\overline{G}, \Gamma)$ и $q(x_m) = \varepsilon x_m + \delta_1$ в Δ , где $\varepsilon > 0$ — фиксированная, а $\delta_1 > 0$ — пока произвольная постоянная. Как и выше, получаем

$$\int_{G} qv_{x_{m}}L^{+}v \, dx = -\frac{1}{2} \int_{G} \left[q \left(k'' + c \right) \right]_{x_{m}} v^{2} \, dx + \frac{1}{2} \int_{G} \left\{ \varepsilon v_{x_{1}}^{2} + \left(\varepsilon k + q k' \right) \sum_{i=2}^{m-1} v_{x_{i}}^{2} + \left[2q \left(\frac{3}{2} k' - \alpha \right) - \varepsilon k \right] v_{x_{m}}^{2} \right\} dx + \\
+ \frac{1}{2} \int_{\Sigma} N^{2} q n_{m} \left(n_{1}^{2} + k \sum_{i=2}^{m} n_{i}^{2} \right) ds - \frac{1}{2} \int_{S_{2}} N^{2} q k \, ds = J_{1} + J_{2} + J_{3} + J_{4}. \tag{5}$$

Пусть $\alpha < \inf_{\substack{x_m \in \Delta \\ q > 0, \ 2q \ (^3/_2k' - \alpha) \ - \ \epsilon k \geqslant v = \mathrm{const} > 0}$ и $\epsilon k + qk' \geqslant v_i = \mathrm{const} > 0$ в Δ .

$$J_2 \geqslant C_1 \sum_{G = 1}^m v_{x_i}^2 dx,$$

где $C_i = \min$ (ϵ , ν , ν_i). Если Σ и Σ_i удовлетворяют условиям (4), то $J_3 + J_4 > 0$. Если $[q(k''+c)]_{x_m} \le 0$ в \overline{G} , то $J_1 \ge 0$. Так как v=0 на Γ , то

$$\int_G \sum_{i=1}^m v_{x_i}^2 dx \geqslant C_2 \int_G \left(v^2 + \sum_{i=1}^m v_{x_i}^2 \right) dx.$$

Из (5), применяя неравенство Гёльдера, получаем

$$C_4 \, \| \, v \, \|_1 \, \| \, L^+ v \, \|_0 \geqslant \int\limits_G q v_{x_{_{_{\! \! m}}}} L^+ v \, dx \geqslant C_3 \, \| \, v \, \|_1^2,$$

где $\|\cdot,\cdot\|_1$ — норма в пространстве $W_2^1(G)$. Отсюда получаем энергетическое неравенство

$$||L^+v||_0 \ge C||v||_1, \quad C > 0, \quad v \in \dot{C}^2(\overline{G}, \Gamma). \tag{6}$$

Путем пополнения убеждаемся в справедливости (6) для $v \in W_2^2(pp)$. Из неравенства (6), как известно (1), следует существование слабого решения задачи (1), (2) при любом $f \in W_2^{-1}(G)$. Итак, имеет место следующая

Teopema 2. Если $\alpha < \inf_{x_{m \in \Delta}} 3k' / 2$, $\Sigma u \Sigma_1 y \partial o$ влетворяют условиям (4)

и функции $k(x_m)$, c(x) удовлетворяют условию $[q(k''+c)]_{x_m} \leq 0$ в \overline{G} , то существует слабое решение задачи (1), (2) при любом $f \in W_2^{-1}(G)$.

Аналогично выводится энергетическое неравеиство

$$||Lu||_0 \geqslant C||u||_1, \quad C > 0, \quad u \in W_2^2(zp),$$
 (7)

если $a>\sup_{x_m\in\Delta}k'/2$, $(qc)_{x_m}\leqslant 0$ в \overline{G} и выполняются условия (4). Из (7) сле-

дует единственность гладкого решения $u \in W_2^2(\mathfrak{p})$ задачи (1), (2).

Если $\sup_{x_m\in\Delta}k'\,/\,2<\alpha<\inf_{x_m\in\Delta}3k'\,/\,2$ и выполняются остальные условия тео-

рем 1 и 2, то справедливы оба энергетические неравенства (6) и (7). В этом случае задача (1), (2) почти корректна (1).

Математический институт с вычислительным центром Болгарской Академии наук София

Поступило 15 VII 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Ю. М. Березанский, Разложение по собственным функциям самосопряженных операторов, Киев, 1965.