Доклады Академии наук СССР 1973. Том 208, № 3

МИКРОБИОЛОГИЯ

Е. И. КВАСНИКОВ, Т. М. КЛЮШНИКОВА, О. А. НЕСТЕРЕНКО, Е. Н. ПИСАРЧУК, Н. И. ПАВЛЕНКО

ФИКСАЦИЯ АТМОСФЕРНОГО АЗОТА МИКРООРГАНИЗМАМИ, ОКИСЛЯЮЩИМИ УГЛЕВОДОРОДЫ

(Представлено академиком А. А. Имшенецким 21 VI 1971)

Азотфиксирующая способность обнаружена у многих свободноживущих бактерий: у некоторых микобактерий, представителей рода Arthrobacter и у Nocardia (1-6). В литературе есть единичные упоминания и об усвоении атмосферного азота представителями отдельных родов бактерий при росте на углеводородах нефти, однако, эти культуры не были идентифицированы и изучены, не была исследована и степень азотфиксации (7, 8).

В наших исследованиях исходным материалом для выделения азотфиксирующих углеводородусваивающих бактерий служили нефтеносные и ненефтеносные (контроль) почвы Прикарпатья. В них устанавливали содержание исследуемых бактерий при высеве на среды, минеральной осно-

Таблина 1

Содержание олигонитрофильных микроорганизмов, использующих углеводороды, в почвах Бориславской нефтеносной площади. Средние данные шестикратной повторности (млн на 1 г абсолютно сухой почвы)

Дата исследования	Среды				
	N₀ 1	№ 2	№ 3	№ 4	
15 V 1969	$\begin{bmatrix} 1,91+0,4\\4.5+0.15 \end{bmatrix}$	$\begin{bmatrix} 1,13+0,2\\ 2,19+0,1 \end{bmatrix}$	йона (ко 0,17±0,05 0,26±0,1 0,2±0,02	$\begin{bmatrix} 0,013+0,002\\ 0.1+0.02 \end{bmatrix}$	
Почва нефтеносного района, визуально не пропитанная нефтью					
15 V 29 VII 8 X	$\left \begin{array}{c} 2,04+0,1\\ 4,46+0,15\\ 2,8\pm0,1 \end{array} \right $	$ \begin{array}{l} 0,99\pm0,2 \\ 2,44\pm0,04 \\ 1,41\pm0,05 \end{array} $	$\substack{0,84+0,1\\1,6\pm0,1\\1,35\pm0,07}$	$ \begin{array}{c c} 0,41+0,04 \\ 0,62\pm0,1 \\ 0,59\pm0,01 \end{array} $	
Почва нефтеносного района, пропитанная нефтью					
15 V 29 VII 8 X	$\left \begin{array}{c} 1,7+0,1\\ 3,45+0,0\\ 2,13\pm0,05 \end{array} \right $	$0,73+0,02$ $1,6\pm0,1$ $0,96\pm0,07$	$ \begin{array}{c c} 0,36\pm0,04 \\ 0,78+0,0 \\ 0,48\pm0,05 \end{array} $	$ \begin{vmatrix} 0,15+0,02\\0,34+0,04\\0,25\pm0,02 \end{vmatrix} $	

вой которых были растворы солей (г/л): Na_2HPO_4 0,3, KH_2PO_4 0,2, $MgSO_4$ 0,1, $NaMoO_4$ 0,002. К ним прибавляли следующие компоненты: среда $N = 1 - (NH_4)_2SO_4$ 0,003, сахароза 20,0; среда N = 2 - сахароза 20,0; среда $N = 3 - (NH_4)_2SO_4$ 0,003, парафин 10,0; среда N = 4 - парафин 10,0. Во всех опытах использовали промышленный парафин ($C_{11} - C_{22}$) Грозненского нефтеперерабатывающего завода.

Было установлено, что распространение фиксирующих азот и усваивающих углеводороды микроорганизмов в нефтеносных почвах подчиняет-

ся определенным закономерностям (табл. 1). В почвах нефтеносного района, визуально не насыщенных нефтью, содержащих единицы процентов битуминозных веществ и расположенных в районе нефтеносных скважин, данных микроорганизмов находится в несколько раз больше, чем в такого же типа почвах (контроль) ненефтеносного района, в которых количество битуминозных веществ не превышало 0,2%. В почве, визуально очень сильно пропитанной нефтью (десятки процентов битуминозных веществ), их меньше, чем в умеренно пропитанной, но также больше, чем в контрольной. Опыты, проведенные как с почвами Бориславской, так и с почвами Долинской нефтеносных площадей, дали совпадающие результаты.

При высеве образцов изучаемых почв на среды (№ 1 и № 3), содержащие в качестве источника азота 0,003 г/л (NH₄)₂SO₄ («стартовый азот»), выделяется больше микроорганизмов, растущих за счет следов азота и за счет усвоения молекулярного азота воздуха, чем при посеве на среды (№ 2 и № 4) без его внесения. Аналогичные данные были получены нами и при изучении закономерностей распространения в почвах других групп микроорганизмов, усваивающих углеводороды (*).

Интересно отметить, что во всех опытах при высеве тех же образцов почвы как нефтеносных, так и ненефтеносных районов на среды (№ 1 и № 2), в которых единственным источником углерода была сахароза, заметной разницы между количеством микроорганизмов-азотфиксаторов не было обнаружено.

Выделенные микроорганизмы отнесены нами по определителю Берджи (10) к видам: Brevibacterium maris, Brevibacterium fulvum, Arthrobacter simplex, Nocardia citrea, Nocardia sp.

Большая часть исследованных штаммов проявляет азотфиксирующую способность при росте на минеральной среде с парафином и «стартовым» азотом. Так, представители рода Brevibacterium накапливали от 2,5 до

Таблица 2 Азотфиксирующая активность некоторых штаммов нокардий на среде со «стартовой» дозой азота

•	-		
Вид	Штамм	Источник углеро- да в среде	Накопление азота, мг на 100 мл среды
Nocardia aquosa	83	Парафин	Нет роста
1	95	»	1,2
	96	»	2,4
	101	»	Нет роста
Ì	83	Натрий	1,9
		уксуснокислый	
	95	То же	0.9
	96	. » »	Нет роста
ĺ	101	» »	1,5
N. rubropertin-	68	Парафин	Нет роста
cta	67	» "	4,0
į	73	»	4,0
1	75	»	7,2
	68	Сахароза	5,0
i	67	»	6.9
	73	»	$\frac{2}{7}, \frac{5}{5}$
i	75	»	7,5
N. flava	111	Парафин	Нет роста
j	112	»	13,0
	113	»	13,0
	116	»	10,0
	111	Натрий	13,2
	1	уксуснокислый	
	112	То же	13, 3
	113	» »	12,5
	116	» »	7,7

7,5 мг азота на 100 мл среды, продуктивность азотфиксации на среде с глюкозой у них составляла 1,75—3,50 мг азота на 1 г потребленного углерода. У культур рода Arthrobacter прибавка азота составляла 1,75—2,00 мг на 100 мл среды. Существенно, что у ряда коринеподобных бактерий азотфиксирующая способность на средах с углеводородами была выше, чем на средах с углеводами. Отдельные штаммы обладают азотфиксирующей способностью только при использовании углеводородов.

Штаммы Nocardia citrea росли на безазотистых средах и на средах со «стартовой» дозой азота. Азотный баланс (определение азота культуральной жидкости, биомассы, внесепного азота) показал, что эти бактерии довольствуются небольшими дозами находящегося в среде азота. Содержание в их клетках азота незначительно, процесс азотфиксации не поддается

определению.

Среди большого количества микроорганизмов, изолированных из почв при высеве на азотсодержащие среды по методам Финнерти (11), Ямала (12), Бушнелла и Хааса (13), нам также удалось выделить штаммы, принадлежащие к коринеподобным бактериям, близким к роду Arthrobacter и роду Nocardia, обладающие способностью фиксировать атмосферный азот при росте на средах, содержащих в качестве единственного источника энергии углеводороды. При этом среди представителей коринеподобных бактерий обнаружены культуры, дающие на средах с парафином и минимальным азотом прибавку, равную 2,4—7,8 мг на 100 мл среды. Продуктивность азотфиксации на средах с сахарозой колебалась от 0,9 до 4,5 мг азота на 1 г потребленного углевода. Значительной способностью азотфиксации обладали многие штаммы исследованных видов Nocardia (табл. 2). Ранее нами было обнаружено это свойство у ряда видов споровых аэробных — типичных термофильных бактерий с оптимумом роста 45—65° (14).

Существенно подчеркнуть, что некоторые культуры, не растущие на средах с сахарозой без азота, растут на среде с парафином. Это, возможно, объясняется тем, что при росте на безазотных средах они нуждаются в дополнительных ростовых факторах, имеющихся в нефтепродуктах. В то же время отсутствие роста отдельных штаммов на средах с парафином и минимальным содержанием азота вызвано неспособностью окислять углеводороды при недостатке азота.

Обнаружение среди бактерий и нокардий видов, обладающих значительной активностью фиксации азота атмосферы при использовании в качестве единственного источника энергии простейших органических соединений — углеводородов, представляет существенный интерес в эволюционном аспекте. В настоящее время установлено, что углеводороды начали образовываться на нашей планете еще на заре ее развития. Можно предположить, что углеводородусваивающие азотфиксаторы возникли на первых этапах развития мира микроорганизмов.

Институт микробиологии и вирусологии Академии наук УССР Киев Поступило 26 V 1971

цитированная литература

¹ Т. А. Калининская, Почвенная и сельскохозяйственная микробиология, Ташкент, 1963, стр. 73. ² Т. А. Калининская, Т. К. Ильина, Тез. Всесоюзн. конференции по сельскохоз. и почв. микробиологии, Л., 1963. ³ Н. П. Львов, Докл. ТСХА, 94, 265 (1963). ⁴ М. В. Федоров, Т. А. Калининская, Микробиология, 30, 9 (1964). ⁵ С. Меtcalfe, М. Е. Вгомп, Ј. Gen. Microbiol., 17 (1957). ⁶ В. Smyk, Zbl. Bakteriol., Abt. II, 124, 231 (1970). ⁷ F. Coty, Biotechnol. and Bioengen., 9, 25 (1967). ⁸ М. С. Gay et al., Science Invest., 24, 560 (1969). ⁹ Е. И. Квасников, И. П. Кривицкий, Микробиология, 37 (1968). ¹⁰ Bergey's Manual of Determinative Bacterio'ogy, 7th Ed., Ed. R. S. Breed, 1957. ¹¹ W. R. Finnerty, E. Hawtrey, R. E. Kallio, Zs. allgem. Mikr., 2, 469 (1962). ¹² K. Yamada, J. Takachashi et al., Agr. Biol. Chem., 27, 390 (1963). ¹³ L. Buschnell, H. Haas, J. Bacteriol., 41, 653 (1941). ¹⁴ Е. И. Квасников, А. М. Журавель, Т. М. Клюшникова, Микробиология, 40, 3 (1971).