УДК 517.948 *МАТЕМАТИКА*

B. H. CTPAXOB

ОБ АЛГОРИТМАХ ПРИБЛИЖЕННОГО РЕШЕНИЯ ЛИНЕЙНЫХ УСЛОВНО-КОРРЕКТНЫХ ЗАДАЧ

(Представлено академиком Г. И. Марчуком 24 III 1972)

1. Пусть X — банахово пространство, T — действующий в X замкнутый неограниченный линейный оператор, $\overline{D(T)}=X$. Задача нахождения элементов $\phi=Tf$ по элементам $f\in D(T)$ поставлена некорректно (отсутствует непрерывная зависимость ϕ от f). Однако при выполнении дополнительных ограничений задача может быть превращена в корректную. Подобные задачи получили название условно-корректных $\binom{1}{2}$. В настоящей заметке рассматривается следующая условно-корректная задача: требуется найти элемент $\phi=Tf$ по элементу $f_{\delta}=f+\delta f$, где

$$f \in \mu_N, \quad \delta f \in X, \quad \|\delta f\| \le \delta, \quad \mu_N = \{f; \|Uf\| \le N\},$$
 (1)

N и δ —известные числа, U—действующий в X замкнутый неограниченный линейный оператор, $D(U) \subset D(T)$, $\overline{D(U)} = X$, $B = U^{-1}$ существует (ограниченный или неограниченный), $\overline{D(B)} = X$. Предполагается, что μ_N является множеством равномерной регуляризации для задачи нахождения значений оператора T.

2. Приведем основные понятия теории линейных условно корректных задач. Всюду ниже предполагается, что α — параметр, a — множество его

значений, α_0 — предельная точка в a.

Определение 1 (3). Пусть $m \subset X$, $\overline{m} = X$. Семейство действующих в X линейных операторов S_{α} называется фильтрующим в m, если: 1°) $S_{\alpha}\theta \in m$ $V\alpha \in a$, $\alpha \neq \alpha_0$, $V\theta \in X$; 2°) $\|\theta - S_{\alpha}\theta\| \to 0$ $V\theta \in X$; 3°) $\sup \|S_{\alpha}\| = K < +\infty$.

Определение 2 (4, 3). Семейство V_{α} действующих в X линейных операторов называется регуляризующим для задачи нахождения значений оператора T, если: 1°) $\|V_{\alpha}\| < +\infty$ $\forall \alpha \in a$, . $\alpha \neq \alpha_0$; 2°) $\|Tf - V_{\alpha}f\| \to 0$ $\forall f \in D(T)$.

Определение 3 (3). Если для всех α операторы регуляризующего семейства V_{α} имеют представление $V_{\alpha}=TS_{\alpha}$, где S_{α} — фильтрующее в D(T) семейство, то семейство V_{α} называется нормальным.

Определение 4 (5, 3). Если на множестве $M \subset D(T)$ $\mu(\alpha) = \sup_{\alpha \in a} \|Tf - V_{\alpha}f\| < +\infty$, $\mu(\alpha) \to 0$, то M называется множеством равномерной регуляризации для V_{α} .

Определение 4 (5,3). Если на множестве $M \subset D(T)$ $\mu(\alpha) = \sup \|f - S_{\alpha}f\| < +\infty, \ \eta(\alpha) \to 0$, то m называется множеством рав-

номерной фильтрации для S_{α} .

Предложение 1. Для того чтобы μ_N из (1) было множеством равномерной регуляризации для семейства V_α , необходимо и достаточно, чтобы было: 1°) $\gamma(\alpha) = \|(T - V_\alpha)B\| < +\infty$ $\forall \alpha \in a; \ 2^\circ)$ $\gamma(\alpha) \to 0$.

1057

Предложение 2. Для того чтобы μ_N из (1) было множеством равномерной фильтрации для семейства S_{α} , необходимо и достаточно, чтобы было: 1°) $\chi(\alpha) = \|(E - S_{\alpha})B\| < +\infty$ $\forall \alpha \in a; 2^{\circ}$) $\chi(\alpha) \to 0$

Определение 6. Совокупность семейств V_{α} , для которых μ_{N} является множеством равномерной регуляризации, обозначается $V(T; \mu_{N})$. Совокупность семейств S_{α} , для которых μ_{N} является множеством равномография траници обозначается $S(U; \mu_{N})$.

мерной фильтрации, обозначается $S(\dot{U}; \mu_N)$. О пределение 7 (6, 8, 7). Величина

$$\omega(\delta, N; U) = \inf_{R \in L(X, X)} \sup_{f_{\delta} \in M_{\delta}} \| Tf - Rf_{\delta} \|, \tag{2}$$

где L(X,X) — пространство действующих из X в X ограниченных линейных операторов, $M_{\delta}=\{f_{\delta}=f+\delta f,\ f\equiv \mu_{N},\ \|\delta f\|\leqslant \delta\}$, называется наилучтим приближением элементов $\phi=Tf$ на M_{δ} с помощью ограниченных линейных операторов.

Аналогичный смысл имеет величина (⁶)

$$\widetilde{\omega}(\delta, N; U) = \inf_{R \in L(X, X)} \sup_{f_{\delta} \in \widetilde{\mathcal{M}}_{\delta}} \|Tf - Rf_{\delta}\|, \tag{3}$$

где $\widetilde{M}_{\delta} = \{f_{\delta} = f + \delta f, f \in \mu_{N}, \delta f \in \mu_{N}, \|\delta f\| \leq \delta\}.$

Определение 8. Если для семейства V_2 . $\alpha \in a$, регулирующего задачу нахождения значений оператора T. существует зависимость $\alpha = \alpha(\delta)$ такая, что для всех $\delta \leq \delta_0$

$$\sup_{f_{\delta} \in M_{\delta}} \|Tf - V_{\alpha(\delta)}f_{\delta}\| \leq C\omega(\delta, N; U), \tag{4}$$

где C может зависеть от N, но не от δ , то приближенные решения $\phi_{\delta} = V_{\alpha(\delta)}f_{\delta}$ называются оптимальными по порядку на μ_{N} .

3. Теорема 1. Пусть $V_{\alpha} \in V(T; \mu_N)$ и пусть

$$C_{\delta}(\alpha) = \| (T - V_{\alpha})B \| N + \| V_{\alpha} \| \delta, \quad \alpha \in a.$$
 (5)

Тогда имеет место неравенство

$$^{1}/_{2}C_{\delta}\left(\alpha\right) \leqslant \sup_{f_{\delta} \in M_{\delta}} \|Tf - V_{\alpha}f_{\delta}\| \leqslant C_{\delta}\left(\alpha\right). \tag{6}$$

Следствие 1. Если зависимость $\alpha=\alpha(\delta)$ определяется из условия

$$C_{\delta}(\alpha) = \inf_{\alpha},$$
 (

то соответствующие решения $\varphi_{\delta} = V_{\alpha} f_{\delta}$ имеют предельный порядок убывания погрешности при $\delta \to 0$ (для данного семейства).

Следствие 2. Либо зависимость (7) обеспечивает оптимальность по порядку приближенных решений на μ_N , либо не существует ни одной зависимости $\alpha = \alpha(\delta)$, обеспечивающей оптимальность по порядку приближенных решений на μ_N .

4. Пусть нормальные регуляризующие семейства $V_{\alpha} = TS_{\alpha} \in V(T; \mu_N)$ обладают следующими свойствами: 1°) $S_{\alpha} \in S(U; \mu_N)$; 2°) $\|US_{\alpha}\| < +\infty$ $\forall \alpha \in a, \ \alpha \neq \alpha_0; \ 3$ °) $US_{\alpha} = S_{\alpha}U \quad \forall \alpha \in a$. Всюду ниже предполагается, что V_{α} обладает этими свойствами.

 Π редложение 3. Семейство $W_{\alpha}=US_{\alpha}$ регуляризует задачу нахождения значений оператора U.

Теорема 2. Пусть

$$\delta_{\alpha} = \sup_{f_{\delta} \in M_{\delta}} ||f - S_{\alpha}f_{\delta}||, \ N_{\alpha} = \sup_{f_{\delta} \in M_{\delta}} ||U(f - S_{\alpha}f_{\delta})||. \tag{8}$$

Тогда имеет место неравенство

$$\omega(\delta, N; U) \leqslant \sup_{f_{\delta} \in M_{\delta}} \|Tf - V_{\alpha}f_{\delta}\| \leqslant \widetilde{\omega}(\delta_{\alpha}, N_{\alpha}; U) \leqslant \omega(\delta_{\alpha}, N_{\alpha}; U).$$
(9)

Замечание. Неравенство (9) остается в силе, если δ_{α} и N_{α} заметить произвольными оценками δ_{α}^* , N_{α}^* сверху; например, можно принять

$$\delta_{\alpha}^{*} = \| (E - S_{\alpha}) B \| N + \| S_{\alpha} \| \delta,$$

$$N_{\alpha}^{*} = \| (E - S_{\alpha}) \| N + \| W_{\alpha} \| \delta.$$
(10)

Теорема 3. Если

$$\sup_{\alpha \in a} \| (E - S_{\alpha}) B \| \| W_{\alpha} \| = K < +\infty, \tag{11}$$

то всегда можно выбрать зависимость $\alpha = \alpha(\delta)$ таким образом, чтобы приближенные решения $\varphi_{\delta} = V_{\alpha(\delta)}f_{\delta}$ были оптимальными по порядку на μ_N . В частности, эти зависимости можно задавать условиями

$$||(E - S_{\alpha})B|| - \delta / N| = \min, \quad ||W_{\alpha}|| - N / \delta| = \min.$$
 (12)

5. Нетрудно получить аналог теоремы 2 для погрешностей в точках из M_{b} .

Теорема 4. Пусть для данных $f \in M$, $f_b \in M_b$

$$\delta_{\alpha}(f, f_{\delta}) = \|f - S_{\alpha}f_{\delta}\|, \quad N_{\alpha}(f, f_{\delta}) = \|U(f - S_{\alpha}f_{\delta})\|. \tag{13}$$

Тог∂а

$$||Tf - V_{\alpha}f_{\delta}|| \leq \widetilde{\omega}\left(\delta_{\alpha}(f, f_{\delta}), \quad N_{\alpha}(f, f_{\delta}); U\right) \leq \omega\left(\delta_{\alpha}(f, f_{\delta}), N_{\alpha}(f, f_{\delta}); U\right). \tag{14}$$

Замечание. Неравенство (14) остается в силе, если $\delta_{\alpha}(f, f_{\delta})$, $N_{\alpha}(f, f_{\delta})$ заменить произвольными оценками $\delta_{\alpha}^{*}(f, f_{\delta})$, $N_{\alpha}^{*}(f, f_{\delta})$ сверху. В частности, можно принять

$$\delta_{\alpha}^{*}(f, f_{\delta}) = \|\delta f\| + \|f_{\delta} - S_{\alpha} f_{\delta}\|,$$

$$N_{\alpha}^{*}(f, f_{\delta}) = \|(E - S_{\alpha}) U f\| + \|W_{\alpha} \delta f\|.$$
(15)

Как известно ($^{8-10}$), «принцип невязки» построения приближенных решений некорректных задач состоит в том, чтобы находить эти решения по соотношению $\varphi_{\delta} = V_{\alpha} f_{\delta}$, где $\alpha = \alpha(\delta)$ найдено из условия

$$||f_{\delta} - S_{\alpha}f_{\delta}|| - \delta| = \min.$$
 (16)

Теорема 5. Если параметр а выбран по принципу невязки, то

$$\|\varphi - \varphi_{\delta}\| \leqslant \widetilde{\omega} (2\delta + \varepsilon(\delta), N_{\alpha}^{*}; U) \leqslant \omega(2\delta + \varepsilon(\delta), N_{\alpha}^{*}; U), \tag{17}$$

 $\epsilon \partial e \ \epsilon(\delta) \ / \ \delta = O(1) \ npu \ \delta \rightarrow 0, \ a \ N_a^* \ onpedeneho \ no \ (15).$

Следствие. Если зависимость $\alpha = \alpha(\delta)$ (16) такова, что при $\delta \to 0$ элементы $\theta_{\delta} = W_{\alpha(\delta)} f_{\delta}$ сходятся (по норме) к элементам $\theta = Uf$, то

$$\widetilde{\omega}_{\delta \to 0} (2\delta + \varepsilon(\delta), \ N_{\alpha}^*; \ U) = O(\omega(\delta, \|Uf\|; U)). \tag{18}$$

Иначе говоря, при малых δ приближенные решения ϕ_{δ} будут оптимальными по порядку.

Теоремой 5 и следствием из нее существенно усиливаются результаты В. А. Морозова (7), относящиеся к методу регуляризующего функционала А. Н. Тихонова для случая гильбертова пространства.

Институт физики Земли им. О. Ю. Шмидта Академии наук СССР Москва Поступило 24 III 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ С. Г. Крейн, ДАН, 114, № 6 (1957). ² В. Н. Страхов, ДАН, 196, № 4 (1971). ³ В. Н. Страхов, Физика Земли, № 8 (1969). ⁴ А. Н. Тихонов, ДАН, 151, № 3 (1963). ⁵ В. К. Иванов, Сиб. матем. журн., 7, № 3 (1966). ⁶ В. Н. Страхов, Дифференциальные уравнения, 6, № 8 (1970). ⁷ В. А. Морозов, Журн. вычислит. матем. и матем. физ., 11, № 4 (1971). ⁸ В. L. Fillips, Assoc. Comp. Machinery, 9, № 1 (1962). ⁹ В. К. Иванов, Журн. вычислит. матем. и матем. физ., 6, № 6 (1966). ¹⁰ В. А. Морозов, там же, 8, № 2 (1968).