УДК 513.83

MATEMATUKA

в. л. тимохович

О ПРОСТРАНСТВАХ С Ф-СИСТЕМАМИ

(Представлено академиком П. С. Александровым 30 III 1972)

А. В. Архангельский в работе (¹) определил ω-систему (см. ниже) и доказал, что в классе вполне регулярных пространств наличие ω-системы эквивалентно полноте в смысле Чеха. Хаусдорфовы и регулярные пространства с ω-системой были исследованы в работах (², ³). Предлагаемая заметка посвящена дальнейшему изучению этих пространств. Все пространства, если это не оговорено особо, предполагаются хаусдорфовыми. Пространства, обладающие ω-системой, будем для краткости называть полными.

Определение 1. Скажем, что конец ξ над пространством X (т. е. максимальная центрированная система открытых в X множеств) мелкий относительно семейства покрытий $\{\lambda_n\}$, если найдутся последовательности $\{n_k\}$ и $\{U_k\}$, где $n_{k+1} > n_k$ и $U_k \in \xi$, такие, что $U_k \subset V \in \lambda_{n_k}$ для каждого k. Семейство покрытий $\{\lambda_n\}$ пространства X назовем ω -с и с т е м о й, если любой конец ξ , мелкий относительно $\{\lambda_n\}$, сходится к некоторой точке $x \in X$.

Обозначим $\sigma X = X \cup \{\xi | \xi - \text{свободный конец над } X\}$, $\mathcal{T}X$ — топология пространства X, $*O = O \cup \{\xi \in \sigma X \setminus X | \xi \in O\}$, $O \in \mathcal{T}X$, $\mathcal{T}_{\bullet}\sigma X = \{*O | O \in \mathcal{T}X\}$. Семейство $\mathcal{T}_{\bullet}\sigma X$ объявим базой пространства σX . Ивестно, что σX — максимальное H-замкнутое расширение в смысле θ -непрерывных отображений (см., например, $\binom{4}{\bullet}$, $\binom{5}{\bullet}$).

Если $\delta X - H$ -замкнутое расширение пространства X, то существует единственное θ -непрерывное бикомпактное отображение $j_{\delta X}$: $\sigma X \to \delta X$, обладающее свойствами: $j_{\delta X}|X = \mathrm{id}$ (тождественное); $j_{\delta X}^{-1}(\tilde{O})^*O$; $j_{\delta X}([O]_{\sigma X}) = [O]_{\delta X}$, где $O \in \mathcal{T}X$, $\tilde{O} = \delta X \setminus [X \setminus O]_{\delta X}$ (см. (5)).

Обозначим далее θX и X гиперабсолют и абсолют соответственно пространства X, $\pi_X(\xi) = \bigcap_{O \in \xi} [O]_X$: $\dot{X} \to X$. (Здесь мы пользуемся конструкцией абсолюта, привлекающей концы над X (6), т. е. \dot{X} — множество всех концов, сходящихся к точкам $x \in X$, θX — пространство всех вообще концов с базой $\mathcal{T}_1\theta X = \{O^* | O \in \mathcal{T}X\}$, где $O^* = \{\xi \in \theta X | \xi \ni O\}$. Подробнее об абсолюте см. ($^{5-8}$)). Нам понадобятся следующие известные факты: если $\delta X - H$ -замкнутое расширение, то $\theta X = \theta \delta X$; отображение π_X θ -непрерывно, совершенио и неприводимо; $\pi_X^{\pm}(O^* \cap \dot{X}) = \mathrm{Int}_X[O]_X^*$: $\pi_X[O^* \cap \dot{X}) = [O]_X$.

Рассмотрение полных пространств начнем со следующего определения. Определение 2. H-замкнутое расширение δX регулярного пространства X назовем R-расширением, если каждая точка $x \in X$ регулярна в δX .

Те о р е м а 1. Следующие условия для H-замкнутого расширения δX регулярного пространства X эквивалентны; 1) $\delta X - R$ -расширение; 2) $j_{\delta X}$ непрерывно в каждой точке $x \in X$; 3) $\pi_{\delta X}$ непрерывно в каждой точке $x \in \dot{X}$.

Лемма 1. Если $X \in \mathcal{T}Y$, Y регулярно, $\delta Y - R$ -расширение для Y, то $[X]_{\delta Y} - R$ -расширение для X.

^{*} Если $f: X \rightarrow Y$, то $f^{\#}(A) = \{y \in Y | f^{-1}(y) \subset A\}$.

$$\Pi$$
 е м м а 2 . Если $\delta X_{\alpha}-R$ -расширение X_{α} , то $\prod_{(\alpha)}\delta X_{\alpha}-R$ -расширение

 $\prod X_{\alpha}$ (a)

Необходимо отметить, что $\sigma X - R$ -расширение тогда и только тогда, когда X регулярно. Отметим также, что R-расширения внешне схожи с ΠO -расширениями (бикомпактное расширение $\delta X - \Pi O$ -расширение, если любые две точки $x \in X$ и $y \in \delta X \setminus X$ отделимы в δX ; подробнее см. в (9)).

Теорема 2. Следующие условия для регулярного пространства Х эквивалентны: 1) X полное; 2) $X-G_{\delta}$ в любом (достаточно в одном) R-расширении; 3) $X-G_{\mathfrak{d}}$ в любом (достаточно в одном) ПО-расширении.

Доказательство почти то же, что и для теоремы 1 работы (2).

Вследствие теоремы 2 и леммы 2 справедлива

Теорема 3. Произведение счетного числа регулярных полных пространств — полное пространство.

Известно, что уолменовское расширение регулярного пространства принадлежит классу ПО-расширений этого пространства (9). В силу этого факта, а также теоремы 3 работы (2) имеет место

Теорема 4. Регулярные полные пространства наследственны по множествам типа G_{δ} .

Следуя А. В. Архангельскому, назовем симметрику о на пространстве Х полной, если любая фундаментальная последовательность (последовательность $\{x_n\}$ фундаментальная, если для любого $\varepsilon > 0$ найдутся n и $y \in X$ такие, что $x_k \in O(y, \varepsilon)$, как только $k \ge n$) в X сходится. Предположим, что симметрика о на регулярном пространстве X полная и сильная (т. е. $\operatorname{Int}_x O(x, \varepsilon) \ni x$ для любых $x \in X$ и $\varepsilon > 0$). Исходя из системы $\{\varphi_n\}$, где $\{\varphi_n\} = \{O(x, 1/n) \mid x \in X\}$, нетрудно построить семейство покрытий $\{\lambda_n\}$, удовлетворяющее условиям: для любых $U \in \lambda_n$ и n найдется $x \in X$ такая, что $[U]_X \subset \operatorname{int}_X O(x, 1/n); \lambda_{n+1}$ вписано в λ_n . Тогда, если ξ — конец над X, мелкий относительно $\{\lambda_n\}$, то $\cap \{[O]_X | O \in \xi\} \neq \phi$. Итак, доказана

Теорема 5. Регулярное пространство, симметризуемое сильной полной симметрикой, полное.

Для вполне регулярных пространств эта теорема была доказана A. B. Архангельским (10).

Известны следующие факты: симметризуемый перистый паракомпакт метризуем (10); если X — паракомпакт, Y регулярно и перисто и $Y \supset X$, то существует перистый паракомпакт $X', X \subset X' \subset Y$ (9).

Из этих утверждений, теоремы 5 и одной теоремы работы (°) следует Теорема 6. Паракомпакт, лежащий в пространстве с сильной полной симметрикой, метризуем.

В работе (2) обобщается на регулярные пространства известная теорема Б. А. Пасынкова об открытых паракомпактных образах полных в смысле Чеха пространств (¹¹). Возможно дальнейшее обобщение теоремы Б. А. Пасынкова на хаусдорфовы пространства, а именно:

Теорема 7. Паракомпакт, являющийся непрерывным открытым об-

разом полного пространства, полон в смысле Чеха.

Доказательство. Пусть отображение $f: X \to Y$ непрерывно и открыто, X полно, Y — паракомпакт. Концу $\xi \in \theta X$ поставим в соответствие конец $F(\xi) = \{f(U) \mid U = \xi\} \in \theta Y$. Отображение $F: \theta X \to \theta Y$ открыто и непрерывно, F(X) = Y, $F(O^*) = (f(O))^*$, диаграмма

коммутативна (подробнее об отображении F см. в $(^3)$). Обозначим $F|\dot{X}==f$, $F^{-1}(\dot{Y})=\alpha\dot{X}$, $F|\alpha X=\bar{f}$. Отображение $\bar{f}:\alpha\dot{X}\to\dot{Y}$ открыто и совершенно. Так как полнота X, эквивалентная полноте в смысле Чеха, абсолютна \dot{X} (2), можно считать, что $\dot{X}=\bigcap_{n=1}^{\infty}U_n$, где $U_n\in\mathcal{F}\alpha\dot{X}$. Для каждой точки $y\in Y$ выберем точку $x_y\in f^{-1}(y)$ и зафиксируем бикомпакт $\tilde{x}_y=\pi_x^{-1}(x_y)$. Далее найдем окрестность O_{x_y} точки x_y такую, что $(O_{x_y}^*\cap\dot{X})_{\alpha\dot{X}}==O_{x_y}^*\cap\alpha\dot{X}\subset U_1$. В силу равенства $\pi_X^{\pm}(O^*\cap\dot{X})=\mathrm{Int}_X[O]_X$ справедниво включение $O_{x_y}^*\supset\tilde{x}_y$, поэтому семейство $\{f(\pi_{x_y}^{\pm}\cap\dot{X}))\,|\,y\in Y\}$ — покрытие Y. Впишем в него локально конечное покрытие $\{V_\alpha\}$. Каждому V_α поставим в соответствие некоторое множество $f(\pi_X^{\pm}(O_{x_y}^*\cap\dot{X}))\supset V_\alpha$ и возьмем пересечение $f^{-1}(\pi_Y^{-1}(V_\alpha))\cap (O_{x_y}^*\cap\dot{X})$. Обозначим это пересечение Γ_α .

Пегко видеть, что семейство $\{\Gamma_{\alpha}\}$ открытых в \dot{X} множеств локально конечно в αX . Кроме того, $f(\pi_X^{\pm}(\Gamma_{\alpha})) = V_{\alpha}$ и, как следствие локальной конечности, $[\cup \Gamma_{\alpha}]_{\alpha \dot{X}} = \cup [\Gamma_{\alpha}]_{\alpha \dot{X}} \subset U_i$. Множество $[\cup \Gamma_{\alpha}]_{\alpha \dot{X}}$ можно представить в виде $W_i^* \cap \alpha \dot{X}$, где $W_i \in \mathcal{T} X$ (см. (5)). Итак, имеем $W_i^* \cap \alpha \dot{X} \subset U_i$; $\pi_X^{\pm}(W_i^* \cap \dot{X})$ открыто в X и $f|\pi_X^{\pm}(W_i^* \cap \dot{X})$ — открытое отображение; $f(\pi_X^{\pm}(W_i^* \cap \dot{X})) = Y$. Пусть построены множества W_2, \ldots, W_n и для каждого $i=1,\ldots,n$ выполнены условия: 1°) $W_i^* \supset W_{i+1}^*$; 2°) $W_i^* \cap \alpha \dot{X} \subset U_i$; 3°) $f(\pi_X^{\pm}(W_i^* \cap \dot{X})) = Y$. Обозначим $f_n = f|\pi_X^{\pm}(W_n^* \cap \dot{X})$. Для каждой $y \in Y$ зафиксируем $x_y \in f_n^{-1}(y)$ и окрестность $O_{x,y}$ точки x_y так, чтобы $O_{x,y}^* \cap \alpha \dot{X} \subset U_{n+1}$, $O_{x,y}^* \subset W_n^*$. Далее, проведя те же рассуждения, что и в начале, получим множество W_{n+1} , удовлетворяющее условиям 1°) — 3°). По индукции продолжим построение множеств W_n для всех натуральных n. Обозначим $\Phi = \bigcap_{n=1}^\infty (W_n^* \cap \alpha \dot{X})$. Множество Φ замкнуто и G_δ в \dot{X} и, следовательно, полно в смысле Чеха. С другой стороны, Φ замкнуто в $\alpha \dot{X}$, $\pi_Y \circ f \mid \Phi$ — совершенное отображение и $\pi_Y (\bar{f}(\Phi)) = Y$. Таким образом, Y полно в смысле Чеха. Теорема доказана.

Пользуюсь случаем поблагодарить В. И. Пономарева за ряд ценных советов.

Белорусский государственный университет им. В. И. Ленина Поступило 15 III 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. В. Архангельский, Вестн. Моск. унив., сер. матем., мех., № 2 (1961).

² В. Л. Тимохович, там же, № 1 (1972).

³ В. Л. Тимохович, Весці АН БССР, сер. фіз. мат. навук, № 4 (1972).

⁴ С. В. Фомин, Апп. math., 44 (1943).

⁵ С. Д. Илиадис, С. В. Фомин, УМН, 21, № 4 (1966).

⁶ С. Д. Илиадис, ДАН, 149.

№ 1 (1963).

⁷ В. И. Пономарев, ДАН, 149, № 1 (1963).

⁸ В. И. Пономарев, Матем. сборн., 60, № 1 (1963).

⁹ В. Л. Тимохович, Весці АН БССР, сер. фіз. мат. навук, № 5 (1972).

¹⁰ А. В. Архангельский, ДАН, 164, № 2 (1965).

¹¹ Б. А. Пасынков, ДАН, 175, № 2 (1967).