УДК 519.95

КИБЕРНЕТИКА И ТЕОРИЯ РЕГУЛИРОВАНИЯ

ю. п. леонов

О ДИНАМИЧЕСКИХ СИСТЕМАХ, НАБЛЮДАЕМЫХ В ОПЫТАХ

(Представлено академиком Б. Н. Петровым 20 IV 1972)

Рассматриваются функции x(t), u(t) из $L_2(0, T)$, являющиеся некоторыми сигналами, наблюдаемыми в опыте.

Определение. Функции x(t) и u(t) задают линейную динамическую систему, если выполняются следующие условия:

1) Для заданной функции (входного сигнала) x(t) существует функция $y^* \in L_2(0,T)$ (сигнал на выходе), близкая к u(t) и определяемая соотношением

$$y^* = L\omega^*. (1)$$

где L — линейный интегральный оператор вида

$$L\omega^* = \begin{cases} \int_0^t x (t - \tau) \, \omega^*(\tau) \, d\tau, & 0 \leqslant t \leqslant T_1, \\ \int_0^{T_1} x (t - \tau) \, \omega^*(\tau) \, d\tau, & t > T_1, \end{cases}$$
(2)

 $\omega^*(t)$ — весовая функция, характеризующая динамическую систему, T_1 — память системы.

2) Для заданного класса входных сигналов X_1 определен соответствующий класс функций Y_1 на выходе системы

$$y_1^* = L_1 \omega^*, \quad L_1 \in \{L_1\},$$
 (3)

где $\{L_i\}$ — класс линейных операторов, для которых выполняется условие

$$\|\Delta y_1\| \le \|\Delta y\|, \quad L_1 \in \{L_1\},\tag{4}$$

где

$$\Delta y_1 = y_1^* - y_1 = L_1 \Delta \omega, \quad \Delta y = y^* - y = L \Delta \omega,$$

 $\Delta \omega = \omega^* - \omega, \quad y = L \omega, \quad y_1 = L_1 \omega.$

В (4) y и y_4 являются сигналами на выходе «истинной» системы с весовой функцией $\omega(\cdot)$.

На основании (4) перавенство (3) можно записать в эквивалентном виде

$$\|\Delta\omega\|_{\mathcal{B}} \le \|\Delta\omega\|_{\mathcal{A}}, \quad \Delta\omega \in H / \bar{S}.$$
 (5)

В (5) используется изометрия пространства $L_2(0, T)$ выходных сигналов и энергетического фактор-пространства H / \bar{S} весовых функций (¹). Условие изометрии на основании (4) дают

$$\|\Delta y_1\|^2 = (L_1^* L_1 \Delta \omega, \Delta \omega) = \|\Delta \omega\|_B^2.$$

Существенно, что (4) и (5) должны выполняться для любой функции $\Delta \omega$. Относительно модели имеет место

T е о р е м а. Πy сть за ∂ аны сигналы x(t) и $u(t) \in L_2(0,T)$.

Тогда определена (в указанном смысле) динамическая система. Сигиалы $x_1 \in X_1$, для которых выполняется условие (4), имеют вид

$$x_1 = R_1 x, \tag{6}$$

где R_1 — самосопряженный неотрицательный оператор (см. ниже), действующий в $L_2(0,T)$. Модель устойчива к малым вариациям наблюдаемых сигиалов x и u.

Доказательство. Определим ω^* в (1) из условия минимума расстояния (1)

 $\varepsilon^2 = ||L\omega^* - u||^2. \tag{7a}$

Тогда функция y^* (1) представима в виде

$$y^* = Pu, \tag{76}$$

где $P(\mathcal{P})$ — проектор, действующий в $L_2(0,T)$ со значениями в подпространстве проекций \mathcal{P} . По свойству проекций, функция y^* близка к u в смысле $\varepsilon^2 = \min$.

Определим далее оператор R_1 , действующий из $L_2(0, T)$ в $L_2(0, T)$, формулой

$$R_1 = \sum_k \gamma_k P_k, \tag{8}$$

где P_k — проектор ранга единица, действующий в $L_2(0,T)$ и соответствующий k-ой собственной функции онератора LL^* . Коэффициенты γ_k подчинены условиям $0 \le \gamma_k \le 1$.

Положим теперь

$$L_1 = R_1 L. \tag{9}$$

На основании (1), (3), (4), (8), (9) имсем

$$\Delta y_i = R_i \Delta u_i \tag{10}$$

где $\Delta u = u - y$.

Из (10) и условий па γ_k непосредственно следует неравенство (4), которое выполняется для любой ошибки $\Delta u \in L_2(0, T)$. Вследствие изометрии пространств сигналов $L_2(0, T)$ и пространства весовых функций H / \overline{S} неравенство (4) влечет (5) для любых ошибок и для любых $\Delta \omega \in H / \overline{S}$.

На основании (3), (9) подагая $\omega^* = \delta$, где δ -функция является элементом H / \bar{S} , можно получить из (3)

$$x_1 = L_1 \delta = R_1 x$$
, $x = L \delta$.

В последнем равенстве использовано интегральное свойство б-функции

Класс сигналов X_1 , очевидно, включает сигнал x(t), которому соответствует проектор $R_1 = P = \sum_k P_k$ в (8). В частности, из (8) следует, что сигнал $x_1(t)$ представлен в виде

$$x_{1}(t) = \sum_{k=1}^{\infty} \gamma_{k} e_{k} \theta_{k}(t),$$

где $e_k = (x, \theta_k)$ и $\theta_k(t)$ — собственные функции оператора LL^* , действующего в $L_2(0, T)$. Последнее означает, что спектр сигнала $x_1(t)$, не «богаче» спектра сигнала x(t). В частности, легко заметить, что любой сигнал вида

$$x_{1}(t) = \int_{0}^{t} g(\tau) x(t-\tau) d\tau,$$

где произвольная функция $g(\cdot)$ такова, что интеграл определен, удовлетворяет этому требованию.

$$\|\Delta y_1\| \le \|\Delta u\|. \tag{11}$$

Следовательно, малые вариации сигнала u вызывают малые вариации выходных сигналов Δy .

Остается показать, что модель устойчива относительно малых вариаций входного сигнала x(t). Малым вариациям сигнала x(t), согласно (1), соответствуют малые вариации оператора L. Следовательно, на основании (1) можно записать для приращения y^*

$$\overline{\Delta y}^* = \overline{\Delta L} \omega^*$$

и для нормы

$$\|\overline{\Delta y}^*\|^2 = \|\overline{\Delta L}\omega^*\|^2.$$

В силу непрерывности нормы, из последнего соотношения следует, что малым вариациям $\overline{\Delta L}$ соответствуют малые вариации сигнала Δy .

Доказанная теорема имеет простую физическую интерпретацию. Допустим, что динамическая система является измерительным прибором, предназначенным для измерения сигналов X_1 . При этом на ее выходе появляются сигналы Y_1 , которые из-за наличия динамических ошибок прибора не равны измеряемым сигналам $x_1(t)$, но могут быть близки к ним. Перед измерением мы предварительно определяем весовую функцию прибора $\omega^*(t)$ при помощи тест-сигнала x(t). При оценке весовой функции прибора за счет ошибок наблюдения может быть допущена ошибка $\Delta \omega = \omega^* - \omega$, где $\omega(\cdot)$ — истинная весовая функция прибора, которая остается неизвестной.

Следствием этой ошибки явится ошибка измерения $\Delta y = y^* - y$ сигнала на выходе прибора.

Возникает вопрос, какие сигналы x_1 могут измеряться прибором с весовой функцией ω^* ?

Будем говорить, что сигналы x и x_1 наблюдаемы при помощи прибора ω^* , если ошибки измерения Δy и Δy_1 удовлетворяют условию (4). Условие (4) можно понимать как условие выбора класса сигналов X_1 , инвариантного к ошибкам измерения Δu при использовании тест-сигнала x (2). Согласно доказанной теореме, для наблюдаемости достаточно, чтобы сигналы x_1 представлялись в виде (6), а соответствующие им операторы — в виде (9).

Рассмотрим неотрицательные эрмитовы операторы $L_{\scriptscriptstyle 1}L_{\scriptscriptstyle 1}^*$, действующие в пространстве сигналов $L_{\scriptscriptstyle 2}(0,T)$.

На основании (9) можно записать

$$L_{\mathbf{i}}L_{\mathbf{i}}^{*} = R_{\mathbf{i}}LL^{*}R_{\mathbf{i}},$$

тде сопряженный оператор определяется формулой

$$L_1^* u = \int_{\tau}^T x_1(t - \tau) u(t) dt, \quad 0 \leqslant \tau \leqslant T_1.$$
 (12)

Условие (8) позволяет установить, что все $L_{i}L_{i}^{*}$ коммутируют между собой, а также коммутируют с оператором LL^{*} , соответствующим тест-сигналу x.

На основании (8) и (9) можно заключить, что эрмитовы операторы $L_1^*L_1$, действующие в пространстве весовых функций $L_2(0, T_1)$, также перестановочны между собой и перестановочны с оператором L^*L .

Перестановочность эрмитовых операторов L^*L и $L_1^*L_1$ в $L_2(0, T_1)$ должна иметь место, по-видимому, во всех интересных случаях. Действительно, пусть операторы L^*L и $L_1^*L_1$ определены в $L_2(0, T_1)$. Тогда единственным скалярным коммутатором

$$C = L^* L L_1^* L_1 - L_1^* L_1 L^* L$$

в $L_2(0, T_1)$ может быть только нулевой оператор (3). Это означает, что либо L^*L и $L_1^*L_1$ перестановочны в $E \subset L_2(0, T_1)$, либо функции из E нули операторов L^*L и $L_1^*L_1$. Последний случай, по-видимому, не так интересен как первый, так как система в этом случае не реагирует на сигналы из X_1 .

В заключение можно рассмотреть пример построения динамической системы.

Пусть весовая функция $\omega(\tau)$, $0 \le \tau \le T_1$, определена из условия минимума среднего квадрата ошибки ε^2 (7a). Для определения весовой функции использовался тест-сигнал

$$x(t) = \sum_{k=1}^{n} (a_k \sin \omega_k t + b_k \cos \omega_k t), \quad 0 \leq t \leq T.$$

Чтобы определить класс допустимых сигналов из неравенства (4), следует определить собственные функции $\theta_k(t)$ и собственные значения λ_k оператора LL^* , действующего в $L_2(0,T)$:

$$LL^*\theta_h = \lambda_h \theta_h$$
,

где сопряженный оператор определен формулой (12). Для этого вначале можно определить собственные функции φ_k оператора L^*L и затем перейти к θ_k , воспользовавшись формулой

$$\theta_k = (\lambda_k)^{-1/2} L \varphi_k. \tag{*}$$

Непосредственная проверка позволяет установить, что финмеют вид

$$\varphi_k(\tau) = \sum_{k=1}^n \left(c_{ki} \sin \omega_i \tau + d_{ki} \cos \omega_i \tau \right), \quad k = 1, 2, \ldots, n.$$

Собственные числа λ_h и коэффициенты a_{hi} и d_{hi} определяются единственным образом подстановкой $\varphi_k(\tau)$ из последнего равенства в уравнение для φ_k и из условия нормировки. Определив $\varphi_k(\tau)$, можно пользуясь соотношением (*), пайти необходимые функции $\theta_k(t)$. Яспо, что $\theta_k(t)$ имеют такой же вид, как $\varphi_k(\tau)$, но уже определены в интервале (0, T). Тогда на основании теоремы допустимыми сигналами являются

$$x_1(t) = \sum_{k=1}^n \gamma_k e_k \theta_k(t), \quad 0 \leqslant \gamma_k \leqslant 1.$$

Если n велико, то класс функций $x_1(t)$ достаточно широк, так как произвольная функция $x(t) \in L_2(0, T)$ может быть представлена рядом Фурье с достаточной степенью точности. Этот результат интунтивно понятен, так как в случае линейных систем определяющей характеристикой тест-сигнала x(t) является его спектр.

Спектр сигнала $x_1(t)$, для которого пригодиа полученная модель, должен быть не «богаче» спектра тест-сигнала x(t), если желательно, чтобы модель оставалась достаточно точной. Ограничение на γ_k связано с ошибкой в наблюдении сигнала u(t).

Ипститут проблем управления (автоматики и телемеханики) Москва Поступило 27 III 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Ю. П. Леопов, ДАН, 198, № 1, 64 (1971). 2 Б. Н. Петров, Принцип инвариантности и условия его применения при расчете линейных и нелинейных систем. Тр. 1-го Международи. конгресса ИФАК, Изд. АН СССР, 1961. 3 П. Халмош, Гильбертово пространство в задачах, М., 1970.