УДК 549.632+55/.25


МИНЕРАЛОГИЯ

г. г. ленезин, д. м. кривопуцкая, д. к. архипенко, г. м. рылов

КОРДНЕРИТ — ПОКАЗАТЕЛЬ ПРОДОЛЖИТЕЛЬНОСТИ МЕТАМОРФИЧЕСКИХ ПРОЦЕССОВ

(Представлено академиком В. С. Соболевым 30 XI 1971)

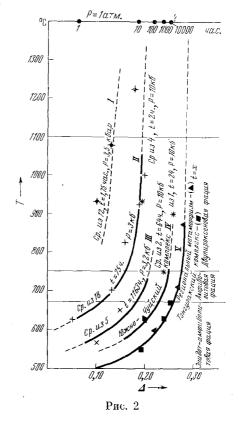
Природные кордиериты встречаются в различных структурных состояниях, на что впервые было обращено впимание в работах (⁸, ⁹) в связи с открытием индиалита. Между гексагональным индиалитом и его химическим аналогом — ромбическим кордиеритом существует полный ряд переходных структурных форм, степень различия которых характеризует-

ся величиной показателя искажения $\Delta=2\theta_{131}-(2\theta_{511}+2\theta_{421})$ /2, где θ —брегговский угол для Си K_α -излучения. В индиалите эти пики, соответствующие рефлексам 131, 511 и 421, сливаются в единый 2131-рефлекс ($\Delta=0$).

Специальными структурными исследованиями показано (5,7), что показатель искажения Δ является не только функцией степени упорядочения Si^{+4} , Al^{+3} в кольцах $\mathrm{Al}\mathrm{Si}_5\mathrm{O}_{18}$ и Al^{+3} , $(\mathrm{Mg}^{+2},\mathrm{Fe}^{2+})$ между кольцевыми радикалами,

но зависит и от других факторов. Так, индиалит из Бокаро Индии (по $\Delta=0$ полностью неупорядоченный) оказался частично упорядоченным. В другом случае одинаковую степень упорядочения показали кордиериты с $\Delta=0.12$ и $\Delta=0.24$. В целом проблема взаимоотношений кордиерита с индиалитом во многом наноминает проблему взаимоотношений микроклина с санидином.

При экспериментальных исследованиях (10 , 11) кордиерит с низким значением Δ получался как первая, метастабильно кристаллизующаяся его разность. Образующийся таким образом «высокий» кордиерит ($\Delta=0$) при длительном тепловом воздействии постепенно переходит в промежуточный ($\Delta=0,20$), а затем в «низкий» или «глубинный» кордиерит. При этом величина показателей искажения определяется температурой (T), продолжительностью эксперимента (t) и менее определенно — давленнем (P). Зависимость Δ от t наглядно видна на рис. 1, а также из табл. 1, где приведены усредненные значения T, P, Δ и t, выведенные из данных (6 , 10 , 11).


В этой статье авторы, в соответствии со схемой фаций (1), анализируют и сопоставляют кордиериты эпидот-амфиболитовой, амфиболитовой и двупироксеновой фаций. Описание и анализ кордиеритов других генетических типов (из пегматитов, ксенолитов, пород контактового метаморфизма и т. д.) предполагается дать в специальных работах.

Всего отобрано 76 определений ноказателей искажения кордиеритов, из них 22 из литературных данных. Пределы колебания Δ и их средние значения по фациям даны в табл. 2.

Здесь же приведены показатели искажения для кордиеритов Тонгулакского комплекса, относящегося к области повышенных давлений анда-

С. В. Мельгунова). Эти кордиериты характеризуют поле устойчивости нарагенезиса Силл + Му и по температуре образования сопоставимы с кордиеритами зоны В Тонгулакского комплекса. В табл. 2 приведены также приближенные температурные оценки границ фаций и зон и их средние значения.

Значимые различия устанавливаются (применялись критерии Фишера -- Стьюдента, а при малой выборке - Вилкоксона (4)) между кордиеритами фации двупироксеновых гнейсов и эпидот-амфиболитовой, эпидотамфиболитовой амфиболитовой, И амфиболитовой и кордиеритами зон В и Б, а также между зонами Г и Б, В и Б. Различия незначимы для кордиеритов двупироксеновой и амфиболитовой, амфиболитовой и зоной Г, а также между зонами Г и В. Иными словами, различия существенны при сопоставлении кордиеритов через фацию или зону, и они не выявляются для соседних подразделений. Общая же картина распределения средних значений Δ в порядке понижения температуры выглядит следующей: двупироксеновая ϕ ация — $\Delta = 0.28$; амфиболитовая — $\Delta = 0.27$; зона

 $\Gamma - \Delta = 0.25$; зона $B - \Delta = 0.24$; зона $B - \Delta = 0.49$; самый низкотемпературный кордиерит, встреченный нами на границе зон A и B (у изограды кордиерита), $-\Delta = 0.11$.

С учетом приведенных данных, а также материала табл. 1 и 2 построена в координатах $T-\Delta$ серия кривых (рис. 2), отражающих зависимость показателей искажения от температуры при постоянных параметрах времени и давления; в верхней части рис. 2 панесены точки значений для t=1; 10; 100; 1000 и 10000 час., снятые с диаграммы рис. 1 для $T_{\rm const}=1400^\circ$. В области низких значений Δ расположена линия зависимости Δ от T при t=1,75 час. и P=3,5 кбар. Далее в направлении оси Δ следуют кривые для t=75 час. и P=3,0 кбар, t=1163 час. и P=3,2 кбар. Крайнее положение здесь занимают статистическая кривая для кордиеритов регионально-метаморфических пород и совпадающая с ней линия кордиеритов Тонгулакского комплекса (t=X). Первые три кривые, интерполированные в область высоких температур, попадают в район 10; 100 и 1000 час. для $T=1400^\circ$, что более или менее совпадает с их собственными значениями. В целом кривые постоянного времени имеют изгиб в области низких температур и начиная примерно с 700° становятся пря-

$T-T_n$	$T_{ m cp}$	P_1-P_n	P_{cp}	t_1-t_n	tep	$\Delta_1 - \Delta_n$	$\Delta_{ m cp}$	n
900—950 10 50—1100 120 0—1250	933 1085 1225	2_5 _ _	3,5 — —	1/2—5	1,75	0.04-0.15 $0.15-0.20$ $0.16-0.20$	0,08 0,17 0,18	3 7 2
600—650 700—700 800—850 900—950	625 700 825 925 1000	2—5 — — — —	3 -	24—168 — — — —	75 — — —	0,04-0,05 $0,10-0,18$ $0,12-0,20$ $0,17-0,21$	0,05 0,13 0,16 0,19 0,20	2 5 6 4 1
550—600 650—650	567 650	2—5 —	3,2	5201704 	1163 —	$0,04-0,14 \\ 0,10-0,20$	$0,10 \\ 0,15$	3 2
700 —800 900—950	750 900 925	10	10	$\begin{array}{c} 64 \\ 24 \\ 2 \end{array}$	64 24 2	0,23-0,25 0,18-0,20	$0,24 \\ 0,26 \\ 0,19$	2 1 4

^{*} Здесь и в табл. 2 (1-n)— крайние значения, T— температура (°C), P— давление (кбар), t— время (час.), Δ — показатель искажения (град.), n— число определений.

Таблица 2

Фации и зоны	Тниж	T_{Bepx}	T_{cp}	$\Delta_1 - \Delta_n$	\overline{x}	n	S^2
Двупироксеновая Амфиболитовая Эпидот-амфиболитовая Тонгулакский комплекс	750 670 500	1000 750 670	875 710 585	$ \begin{vmatrix} 0,24-0,31 \\ 0,24-0,31 \\ 0,41-0,28 \end{vmatrix} $	$0,28 \\ 0,27 \\ 0,22$	28 11 37	0,0004 0,0006 0,0014
Зона Г Зона В Зона В Зона Б Южно-Чуйский комплекс Силл — Му	660 600 500-	680 660 –600	670 630 550	0,20—0,31 0,21—0,28 0,11—0,21 0,14—0,26	$0,25 \ 0,24 \ 0,19 \ 0.20$	7 10 4 10	0,0011 0,0005 0,0028 0,0014

мыми, параллельными оси T, т. е. процесс изменения показателей искажения кордиеритов происходит главным образом в интервале эпидотамфиболитовой фации.

Таким образом, при переходе от низких значений Δ к высоким (на рис. 2 слева направо) происходит закономерное смещение кривых постоянного времени от минимального для t, приближающегося к 0, до максимального, отвечающего времени образования кордиерита с показателями искажения, равными 0.31,— это наивысшие значения Δ , описанные в литературе для регионально-метаморфических пород.

Особое положение здесь занимают кордиериты из метаморфических пород Южно-Чуйского хребта. Будучи сопоставленными по ряду признаков с метаморфическими породами Тонгулакского комплекса (3), эти породы по среднему значению $\Delta=0.20$ попадают на кривую, резко сдвинутую в область низких значений Δ от статистической кривой регионального метаморфизма. Это говорит о том, что образование кордиеритов Южно-Чуйского хребта произошло за отрезок времени, не менее чем на порядок меньший времени образования кордиеритов Тонгулакского комплекса.

Приведенная на рис. 2 диаграмма кривых постоянного времени построена при многих допущениях. Для кривых низких значений времени использованы экспериментальные данные по магнезиальным кордиеритам. В статистическую же обработку включены природные кордиериты заведомо разного химического состава, образовавшиеся при различных

режимах *P*, составах флюида и т. д. Насколько эти факторы влияют на показатели искажения, остается нерешенным. В связи с этим представленная диаграмма является всего лишь приближенным вариантом, демонстрирующим принципиальную сторону вопроса использования показателей искажения кордиеритов для установления продолжительности процессов природного минералообразования, без знания которых в настоящее время вряд ли возможны обоснованные модельные построения.

В заключение авторы приносят благодарность В. И. Кицулу, Е. А. Кулишу, Б. Г. Лутцу, С. В. Мельгунову и В. П. Серенко, любезно предоставившим свои коллекции кордиеритов из метаморфических пород Алданского, Анабарского щитов, Енисейского кряжа и Южно-Чуйского хребта.

Поступило 16 XI 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Н. Л. Добрецов, В. В. Ревердатто и др., Фации метаморфизма, 1970. ² Г. Г. Лепезин, Метаморфизм эпидот-амфиболитовой фации на примере Тонгулакского комплекса (Горный Алтай), «Наука», 1972. ³ Г. Г. Лепезин, Геология и геофизика № 5 (1972). ⁴ В. Ю. Урбах, Биометрические методы, «Наука», 1964. ⁵ G. V. Gibbs, Am. Mineral., 51, № 7 (1966). ⁶ К. Langer, W. Schreyer, Am. Mineral., 54, № 9—10 (1969). ⁷ E. P. Meagher, G. V. Gibbs, Geol. Soc. Am. Spec. Papers, № 87 (1966). ⁸ A. Miyashiro, T. Iiyama et al., Am. J. Sci., 253, № 4, 485 (1955). ⁹ A. Miyashiro, Am. J. Sci., 255, № 4, 43 (1957). ¹⁰ W. Schreyer, I. F. Schairer, J. Petrol., № 2 (1961). ¹¹ W. Schreyer, H. S. Yoder, Neues Jahrb. Mineral. Abhandl., 101, H. 3 (1964). ¹² W. Schreyer, Neues Jahrb. Mineral. Abhandl., 105, H. 3 (1966).