Е. С. ЖУРКИН, М. В. ТИХОМИРОВ, Н. Н. ТУНИПКИЙ

ИССЛЕДОВАНИЕ ДИССОЦИАЦИИ ИОНОВ $\mathbf{He_2}^+$ И $\mathbf{Ne_2}^+$ В ОБЛАСТИ КИНЕТИЧЕСКИХ ЭНЕРГИЙ ДО 100 $\mathbf{\mathfrak{b}6}$

(Представлено академиком И. В. Петряновым-Соколовым 21 VII 1972)

Экспериментальные исследования диссоциации ускоренных ионов при соударении с атомами и молекулами в области малых кинетических энергий позволяют получить информацию о возбуждении ионов — продуктов ионно-молекулярных реакций $\binom{1}{2}$.

В настоящей работе измерены поперечные сечения диссоциации ионов ${\rm He_2}^+$ и ${\rm Ne_2}^+$ в области кинетических энергий ($E_{\rm k}$) до 100 эв (в лабораторной системе координат) в следующих процессах:

Исследования проведены на сдвоенной масс-спектрометрической установке типа Гизе и Майера (³), описанной ранее (⁴). Ионы He_2^+ и Ne_2^+ получены в иониом источнике первого масс-спектрометра (селектора) при достаточно низких давлениях $\text{Не и Ne } (\leq 10^{-2} \text{ тор})$, т. е. в условиях, когда основным механизмом образования этих ионов является ассоциативная ионизация ($^{5-7}$):

He + e
$$\rightarrow$$
 He* + e; He* + He \rightarrow He* + e,
Ne + e \rightarrow Ne* + e; Ne* + Ne \rightarrow Ne* + e. (2)

Вытягивающее напряжение в понизационной камере источника во всех опытах поддерживалось приблизительно равным 50 в. При этой энергии селектор обеспечивал полное разделение атомарных (X^+) и молекулярных (X_2^+) ионов гелия и неона. Требуемая E_κ пучков ионов X_2^+ задавалась разностью потенциалов, создаваемой между выходной щелью селектора и камерой соударений, причем за начало отсчета E_κ принималось то тормозящее напряжение, при котором оставался 1^{0} % начальной интенсивности пучка. Давление Не и Ne в камере столкновений составляло $\sim 4 \cdot 10^{-4}$ тор. Ионы X_2^+ и продукты их диссоциации в процессах (1), вышедшие из камеры столкновений, ускорялись до 5 крв, фокусировались дублетом квадрупольных линз на входную щель второго масс-спектрометра, разделялись его магнитным анализатором и регистрировались вторичным электронным умножителем (ВЭУ). Абсолютные поперечные сечения диссоциации от монов X_2^+ рассчитывались по измеренным отношениям ионных токов X^+/X_2^+ с учетом различий коэффициентов умпожения ВЭУ для ионов X^+ и других дискриминационных факторов.

На рис. 1 даны зависимости σ иопов He_2^+ (кривая 1) и Ne_2^+ (кривая 2) от кинетической энергии этих ионов. Эти кривые относятся к ионам He_2^+ и Ne_2^+ , полученным при энергиях электронов ($E_{\text{в.т}}$), соответственно равных \sim 40 и 28 эв, при которых их образование наиболее вероятно. Минимальная $E_{\text{к}}$ ионов X_2^+ , при которой еще удавалось производить измерения отношений X^+/X_2^+ , составляла 1,5 эв. Отсюда можно заключить, что

7 3³K. 1498

энергии диссоциации D ионов He_2^+ и Ne_2^+ ; полученные в указанных условиях, $D(\text{He}_2^-, \text{Ne}_2^+) \leq 0.5$ эв.

Экспериментальные оценки энергий возбуждения исследованных нами ионов, сделанные ранее в ($^{8-13}$), существенно различаются: $D(\mathrm{He_2}^+)$ от 0,3 до 3,9 эв, $D(\mathrm{Ne_2}^+)$ от 0,33 до 2,0 эв. Разброс экспериментальных данных различных авторов обусловлен или различной энергией понизирующих электронов, или различными механизмами образования. Так, например, в (12) оценка $D(\mathrm{Ne_2}^+)=4.6;\ 2,0$ эв относится к понам $\mathrm{Ne_2}^+,\$ полученным в результате ионно-молекулярной реакции с участием трех частиц.

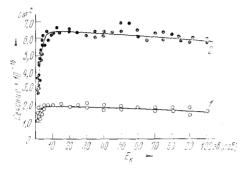
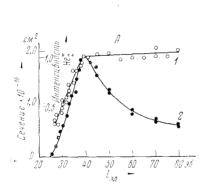



Рис. 1. Зависимости сечений диссоциации ионов He_2^+ (1) и Ne_2^+ (2) от их кинетической энергии

Рис. 2. Зависимости сечения лиссоциации понов $\mathrm{He_2}^+$ (IA) и $\mathrm{Ne_2}^+$ (IB) и их нормированной интепсивности соответственно (2A, 2B) от энергии электронов

Рис. 1

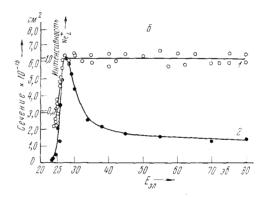


Рис. 2

Энергия связи основного состояния иона $\mathrm{He_2}^+$, рассчитанная теоретически, составляет 2,05 (14), 2,22 (15), 2,47 (16, 17), 2,67 эв (18) и нона $\mathrm{Ne_2}^+$ 1,65 эв (18). Если сопоставить эти величины с нашими данными по энергиям диссоциации ионов $\mathrm{He_2}^+$ и $\mathrm{Ne_2}^+$, то следует, что они сильно возбуждены. Принимая энергии связей основных состояний ионов $\mathrm{He_2}^+$ и $\mathrm{Ne_2}^+$ равными соответственно 2,47 и 1,65 эв, получаем энергии возбуждения ≥ 2 и $\geq 1,2$ эв, которые сохраняются в течение времени порядка 10^{-5} сек.

Из рис. 1 видно, что σ диссоциации этих ионов, начиная c энергий 5—10 эв, падают c повышением E_{κ} . Аналогичная зависимость σ от E_{κ} наблюдалась нами ранее для сильно возбужденных ионов D_2^+ (19). Падение σ диссоциации c повышением E_{κ} , по-видимому, характерно для простейших сильно возбужденных ионов и объясняется доминирующей ролью механизма диссоциации через колебательное возбуждение.

Следовало ожидать, что энергетическое состояние образующихся в реакциях (2) ионов $\mathrm{He_2}^+$ и $\mathrm{Ne_2}^+$ зависит как от энергии возбуждения атомов He^* и Ne^* , вступающих в реакцию, так и от энергии, уносимой электронами. Энергию возбуждения атомов X можно изменять, варьируя $E_{\text{эл}}$, при этом, по-видимому, должна изменяться и энергия возбуждения образующихся ионов $\mathrm{X_2}^+$. Чтобы проверить это предположение при фиксированной кинетической энергии ионов E_{κ} , равной 50 эв, были сняты зависи-

мости сечений диссопиации от энергии электронов, возбуждающих атомы X. Результаты этих исследований приведены на рис. 2 (кривые 1A, B). На этих рисунках приведены также зависимости нормированных интенснвностей нонов He_2^+ и Ne_2^+ (кривые 2A, B) от $E_{2\pi}$. Форма последних кривых аналогична полученным рапее (6, 8).

Из рис. 2 (кривые 1A, B) видно, что σ диссоциации ионов H_2^+ убывает при $E_{\text{вл}} < 40$ эв, а ионов $\text{Ne}_2^+ - \text{при } E_{\text{вл}} < 28$ эв. Этот факт свидетельствует о том, что энергия возбуждения первичных понов уменьшается. При увеличении $E_{\text{зд}}$ сверх указанных величин значения σ практически не изменяются. Поскольку даже при $E_{\text{эл}} > 80$ эв происходит перераспределение заселенностей возбужденных состояний атомов благородных газов (²⁰), наблюдаемый эффект, по-видимому, означает, что среднее возбуждение молекулярных ионов мало меняется в этом диапазоне $E_{\text{эл}}$.

В заключение заметим, что поскольку энергии диссоциации ${\rm He_2}^+$ и ${\rm Ne_2}^+$ (1,3 и 0,69 эв соответственно), полученные по потенциалам появления (8), значительно ниже теоретически рассчитанных энергий связи, весьма вероятно, что молекулярные ионы образуются возбужденными даже при по-

роговой эпергии электронов.

Физико-химический институт им. Л. Я. Карпова Москва

Поступило 10 VIĬ 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ J. J. Leventhal, L. Friedman, J. Chem. Phys., 49, 1974 (1968). ² E. C. Журкин, М. В. Тихомиров, Н. Н. Туницкий, Хим. высоких энергий, 7, № 2 (1973). ³ С. F. Giese, W. В. Маіег, J. Chem. Phys., 39, 739 (1963). ⁴ В. В. Иванов, М. В. Тихомиров, ДАН, 188, 387 (1969). ⁵ І. Р. Моlпаг, І. А. Ногвьеск, Phys. Rev., 82, 565 (1951). ⁶ І. А. Ногвьеск, І. Р. Моlпаг, Phys. Rev., 84, 621 (1951). ⁷ С. Е. Куприянов, Докторская диссертация, Физ.-техн. пыст. им. Иоффе, Л., 1969. ⁸ М. S. Мипѕоп, J. L. Franklin, F. H. Field, J. Phys. Chem., 67, 1542 (1963). ⁹ W. H. Gramer, J. H. Simons, J. Chem. Phys., 26, 1272 (1957). ¹⁰ Е. А. Masor, J. T. Vanderslice, J. Chem. Phys., 29, 361 (1958). ¹¹ Е. А. Mason, J. T. Vanderslice, J. Chem. Phys., 30, 599 (1959). ¹² P. Kebarle, R. M. Haynes, S. K. Searles, J. Chem. Phys., 47, 1684 (1967). ¹³ M. A. Biondi, T. Holstein, Phys. Rev., 82, 962 (1951). ¹⁴ P. N. Reagan, J. C. Brown, F. A. Matsen, J. Am. Chem. Soc., 84, 2650 (1962). ¹⁵ S. Weinbaum, J. Chem. Phys., 3, 547 (1935). ¹⁶ L. Pauling, J. Chem. Phys., 1, 56 (1933). ¹⁷ B. Liu, Phys. Rev. Lett., 27, 1251 (1971). ¹⁸ T. L. Gilbert, A. C. Wahl, J. Chem. Phys., 55, 5247 (1971). ¹⁹ H. H. Тупицкий, Е. С. Журкин, М. В. Тихомиров, Письма ЖЭТФ, 12, 312 (1970). ²⁰ R. M. St. John, F. L. Miller, C. C. Lin, Phys. Rev., 134A, 888 (1964). ¹ J. J. Leventhal, L. Friedman, J. Chem. Phys., 49, 1974 (1968). 134A, 888 (1964).