УДК 537.521  $\Phi$ ИЗИKД

## В. А. АЛЕКСЕЕВ, академик Н. Г. БАСОВ, Э. М. БЕЛЕНОВ, М. В. ДАНИЛЕЙКО, М. И. ВОЛЬНОВ, М. А. ГУБИН, В. В. НИКИТИН, В. Н. ТРОШАГИН

## СПЕКТРОСКОПИЯ ВНУТРИ ОДНОРОДНОЙ (РАДИАЦИОННОЙ) ЛИНИИ

1. Если излучение атомов или молекул состоит из компонент, не отличающихся заметно по интенсивности, наличие этих компонент будет замечено при условии, что в спектральном распределении имеется система смещенных друг относительно друга максимумов. Оказывается, что максимумы проявляются в случае, когда частотное расстояние между компонентами превосходит ширипы линии компонент: согласно критерию Рэлея, например, компоненты разрешены при условии, что сдвиг между ними составляет величину, близкую к ширине линии (1).

В настоящем сообщении предложен и реализован метод, позволяющий найти сдвиг  $2\Delta$  между спектральными компонентами линии и в тех случаях, когда  $2\Delta$  много меньше однородной или радиационной ширины. Метод основан на конкуренции эффектов пространственного и частотного выгорания среды кольцевого лазера. Зависимость качественно различных режимов генерации кольцевого лазера — режима стоячей и бегущей волны — от разности частот  $\Delta$  в принципе позволяет регистрировать наличие тонкой структуры доплеровски уширенной линии при  $\Delta$  в  $10^2-10^4$  разменьшей однородной (радиационной или ударной) ширины.

2. Генерируемое кольцевым лезером поле  $\mathscr{E}(t, x)$  можно представить в общем случае в виде супериозиции двух бегущих навстречу волн:

$$\mathscr{E}(t, x) = E_{+} \cos(\omega t + kx) + E_{-} \cos(\omega t - kx), \tag{1}$$

где  $E_+, E_-, \omega, k$  — амплитуды, частота и волновой вектор соответственно. Расчеты показывают, что при условии

$$\Delta / \gamma < B / \sqrt{\Gamma \gamma} / \Delta \omega_D \tag{2}$$

генерация кольцевого лазера в зависимости от частоты может происходить как в одноволновом режиме (папример,  $E_+=0$ ,  $E_-\neq 0$ , область частот  $2\delta$ ), так и в двухволновом ( $E_+=E_-\neq 0$ ). Здесь  $\Gamma$ ,  $\gamma$ ,  $\Delta\omega_D$ — радиационная, однородная и доплеровская ширины линий компонент, смещенных на расстояние  $2\Delta=\left|\omega_1-\omega_2\right|$ ,  $\omega_1$  и  $\omega_2$ — частоты компонент. Коэффициент B зависит от принятой в расчете модели и мало отличается от единицы. Указанные режимы генерации определяются из уравнения

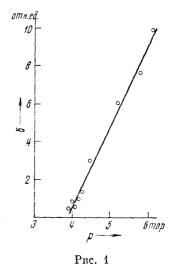
$$\left(\frac{\delta}{\gamma}\right)^2 - B \frac{\sqrt{\gamma \Gamma}}{\Delta \omega_D} + \left(\frac{\Delta}{\gamma}\right)^2 = 0. \tag{3}$$

Отметим, что слагаемые уравнения (3) описывают спектральное выгорание доплеровской линии, пространственное выгорание среды и наличие тонкой структуры линии соответственно.

Рассмотрим в качестве примера случай, когда релаксация заселенностей  $\Gamma$  определяется радиационным временем жизни уровней, а ширина линии  $\gamma$  определяется суммой радиационной  $\Gamma$  и ударной  $\gamma_{yg}$  ширин линии:  $\gamma = \Gamma + \gamma_{yg}$ . Отметим, что в этом случае ширина  $\gamma$  линейно растет с ростом

давления  $p_i$ ; таким образом, определяемая уравнением (3) величина  $\delta$  с изменением давления может принимать как действительные, так и мнимые значения.

При действительных  $\delta$  в зависимости от частоты  $\omega$  генерация лазера происходит как на двух бегущих волнах (крылья доплеровской линии), так и на одной бегущей волне (область частот, принадлежащих интервалу  $2\delta$ ). Случай мнимых  $\delta$  отвечает двухволновой генерации лазера во всем диапазоне частот. По зависимости  $\delta = \delta(p)$  можно определить расстояние между спектральными компонентами. Согласно (2), компоненты могут быть разрешены по крайней мере в случае, когда выполнено условие (2). При  $p \to 0$  из (2) следует


 $\Delta = \Gamma \Gamma / \Delta \omega_D. \tag{4}$ 

В оптическом диапазоне  $\Gamma/\Delta\omega_D\simeq 10^{-4}-10^{-2}$ ; таким образом, чувствительность предлагаемого метода может быть увеличена (по отношению к принятым критериям разрешения спектральных линий) в  $10^2-10^4$  раз.

3. Эксперимент по разрешению тонкой структуры линии был проведен на смеси двух изотопов  ${\rm Ne^{20}}$  и  ${\rm Ne^{22}}$  при парциальных давлениях 1 : 1. Изо-

топический сдвиг  $Ne^{20}$  и  $Ne^{22}$  для перехода  $3s_2 - 3p_4$  ( $\lambda = 3,39\mu$ ) составляет  $\sim 60 \pm 13$  Мгц ( $^2$ ). Исследование проводилось при давлении  $\sim 4$  тор и выше, когда однородная ширина линии превосходит величину 450 Мгц ( $^3$ ); в этом случае, согласно принятым критериям, спектральные компоненты линии неразрешимы.

Параметры установки следующие. Периметр трехзеркального кольцевого лазера ~120 см, длина усиливающей трубки ~20 см. Излучение лазера регистрировалось фотоприемником InSb. При сканировании длины резонатора с помощью пьезокерамики на экране осциллографа наблюдалась зависимость режимов генерации от частоты. Полуширина области одноволновой генерации о от изменения давления смеси приведена на рис. 1. Как следует из графика, наличие структуры линии обусловливает исчезновение одновол-



нового режима генерации при давлениях, меньших 3,8 тор. Из выражения  $\Delta = \gamma \sqrt{\gamma \Gamma} / \Delta \omega_D$  при  $\Gamma = 8$  Мгц (4) получаем значение изотопического сдвига  $2\Delta \simeq 55$  Мгц, которое находится в согласии с результатами работы (2).

Физический институт им. П. Н. Лебедева Академии наук СССР Москва Поступило 11 IX 1972

## цитированная литература

<sup>4</sup> М. Борн, Э. Вольф, Основы оптики, «Наука», 1970. <sup>2</sup> К. Sakurai, Y. Yeda et al., J. Phys. Soc. Japan, 21, 2090 (1966). <sup>3</sup> И. П. Коновалов, А. И. Попов, Е. Д. Проценко, Оптика и спектроскопия, 33, № 2 (1972). <sup>4</sup> В. Dесомрs, M. Dumond, 1EEE, QE-4, № 11, 916 (1968).