УДК 517.9

ю. А. СЕМЕНОВ

ФОРМУЛА ДЛЯ ПРОИЗВЕДЕНИЯ ПОЛУГРУПП, ОПРЕДЕЛЕННОГО МЕТОДОМ БИЛИНЕЙНЫХ ФОРМ, И ЕЕ ПРИЛОЖЕНИЕ К УРАВНЕНИЮ ШРЕДИНГЕРА

(Представлено академиком В. С. Владимировым 5 VIII 1971)

Пусть A и B — неограниченные самосопряженные операторы в гильбертовом пространстве \mathcal{H} . Мы будем рассматривать случай, когда алгебранческая сумма A+B может иметь область определения $\mathcal{D}(A)\cap\mathcal{D}(B)=\{0\}$. Такая ситуация возникает в квантовой механике многих систем. Для определения гамильтониана системы будем применять метод билинейных форм $\binom{1}{2}$. Выбор полного гамильтониана при этом оправдывается с физической точки зрения: для рассматриваемого класса потенциалов фейнмановский интеграл по траекториям сходится к пропагатору, определенному методом билинейных форм. Известно, что в случае потенциалов Като $\binom{3}{2}$ можно воспользоваться теоремой о произведении полугрупп $\binom{4}{2}$. В том случае, когда область $\mathcal{D}(A)\cap\mathcal{D}(B)$ не плотна в \mathcal{H} , теорема о произведении полугрупп неприменима. Однако в работе $\binom{6}{2}$ установлен результат, позволяющий частично обойти указанную трудность.

В настоящей работе мы приводим теорему, позволяющую расширить класс потенциалов, для которых фейнмановский интеграл по траекториям сходится к пропагатору e^{itH} , где H определяется методом билинейных форм

(см. следствия теорем 1 и 2). Изложение приведем в общем виде.

1. Пусть I[u, v] — билинейная форма в \mathcal{H} с областью определения $\mathcal{D}(I) = X \times Y$; $X, Y \subset \mathcal{H}$. По определению, $I^*[v, u] = I[u, v]$ с $\mathcal{D}(I^*) = Y \times X$, где черта означает комплексное сопряжение. Если X = Y, то положим

$$\operatorname{Re} I = \frac{1}{2i} (I + I^*), \quad \operatorname{Im} I = \frac{1}{2i} (I - I^*).$$

Пусть T и A — линейные операторы в \mathcal{H} такие, что $\mathcal{D}(T) \subset \mathcal{D}(A)$ и $||Au|| \leqslant a||Tu|| + b||u||$ $\forall u \in \mathcal{D}(T)$, где a и b — некоторые неотрицательные константы, причем a < 1. Тогда говорят, что оператор A T-ограничен. Пусть $\{Z^i, \ t \geqslant 0\}$ — полугруппа линейных операторов сжатия класса (C_0) в \mathcal{H} . Пусть C — инфинитезимальный оператор, порождающий полугруппу Z^i . Тогда -C есть максимальный аккретивный (м.а.) оператор, так что $(-C)^{\frac{1}{2}}$ определен и тоже есть м.а. оператор (1). В частности, если

$$|\operatorname{Im}(-Cu, u)| \leq \gamma \operatorname{Re}(-Cu, u)$$

для некоторого $\gamma>0$ и $\forall u\in \mathcal{D}(C)$, то мы можем на $\mathcal{D}(C)$ ввести скалярное произведение

$$(u,v)_{\mathcal{H}_C} = \operatorname{Re}(-Cu,v) + \lambda(u,v),$$

где λ — произвольное положительное конечное число. Пополнение $\mathcal{D}(C)$ по норме $\|\cdot\|_{\mathcal{H}_C} = (\cdot, \cdot)_{\mathcal{H}_C}^{\mathcal{H}_c}$ обозначим через \mathcal{H}_c . Очевидно, $\mathcal{H}_c \subset \mathcal{H}$, \mathcal{H}_c плотно в \mathcal{H} и непрерывно в него вложено. Отождествляя \mathcal{H} с его антидвойственным пространством и обозначая через \mathcal{H}_c^* пространство,

$$\mathcal{H}_{\mathcal{C}} \subset \mathcal{H} \subset \mathcal{H}_{\mathcal{C}}^{*},$$
 (1)

где каждое пространство плотно в последующем.

Предложение 1. Если A есть непрерывное отображение \mathcal{H}_c в \mathcal{H}_{c}^{*} ($r. e. A \in L(\mathcal{H}_{c}, \mathcal{H}_{c}^{*})$), u если, кроме того,

$$|(Au, u)| \geqslant \gamma ||u||_{\mathcal{H}_C}^2, \gamma > 0, \quad \forall u \in \mathcal{H}_C,$$

то A есть изоморфизм из \mathcal{H}_c на \mathcal{H}_{c^*} .

Действительно, без труда проверяется, что образ \mathcal{H}_c при отображении A плотен и замкнут в \mathcal{H}_c^* .

Как следствие предложения 1 и теоремы Хилле — Иосиды имеем

Предложение 2. Пусть задана некоторая цепочка гильбертовых пространств $\mathcal{H}_{\pm} \subset \mathcal{H} \subset \mathcal{H}_{\pm}^*$, обладающая свойствами, аналогичными свойствам цепочки (1), и пусть $A \in L(\mathcal{H}_+, \mathcal{H}_+^*)$. Предположим, что для некоторых $\lambda > 0$ и $\delta > 0$ справедливо

 $|((-A+\lambda)u,u)|\geqslant \delta\,\|u\|_{\mathcal{H}_+}$ $\forall u\in\mathcal{H}_+,$ u, кроме того, пусть оператор -A аккретивен. Если A_\circ — сужение оператора A на $\mathcal{D}(A_0) = \{u \in \hat{\mathcal{H}}_+; Au \in \mathcal{H}\}$, то $A_0 - u$ нфинитезимальный оператор, порождающий сжимающую полугруппу класса (C_0) .

2. Теорема 1. Пусть A — инфинитезимальный оператор сжимаю-

щей полугруппы P^t класса (C_0) в \mathcal{H} . Предположим, что

$$|\operatorname{Im}(-Au, u)| \leq \gamma \operatorname{Re}(-Au, u)$$

при некотором $\gamma > 0$ и $\forall u \in \mathcal{D}(A)$. Пусть $\mathcal{H}_A \subset \mathcal{H} \subset \mathcal{H}_A^*$ — цепочка пространств со свойствами (1), построенная по оператору А. А расширяется по непрерывности до оператора $\hat{A} \in L(\mathcal{H}_A, \mathcal{H}_A^*)$.

IIусть \hat{B} — инфинитезимальный оператор сжимающей полугруппы O^t класса (C_0) в \mathcal{H} . Предположим, что существует некоторая цепочка гильбертовых пространств $\mathcal{H}_+ \subset \mathcal{H} \subset \mathcal{H}_+^*$ со свойствами (1); причем выполняются следующие условия:

I) $||u||\mathcal{H}_{+} \geqslant v||u||\mathcal{H}_{A}$ при некотором v > 0 и $\forall u \in \mathcal{H}_{A}$;

II) $\mathscr{D}(B) \cap \mathscr{H}_+$ плотно в \mathscr{H}_+ и B на этой области расширяется по не-

прерывности оператора $B \subseteq L(\mathcal{H}_+, \mathcal{H}_A^*)$;

 $ext{III}$) сужение оператора $(-B)^{\frac{n}{2}}$ на некоторую область, плотную в $\mathscr{H}_+,$ непрерывно из \mathcal{H}_+ в \mathcal{H} . Сужение оператора $(-B^*)^{\frac{1}{2}}$ на некоторую область, плотную в \mathcal{H}_A , непрерывно из \mathcal{H}_A в \mathcal{H} .

Пусть B есть сужение оператора B на \mathcal{H}_A . Тогда

а) оператор $\hat{A}+B$ имеет сужение C в \mathcal{H} , которое является инфинитезимальным оператором, порождающим сжимающую полугруппу R^t класса (C_0) ;

(5) при $n \to \infty$ произведение $[P^{t/n}Q^{t/n}]^n$ сходится в сильной оператор-

ной топологии к R^t .

Замечание. Теорема 1 непосредственно неприменима к уравнению Шредингера, ибо $\operatorname{Re}\left(\frac{i}{2m}\Delta u,u\right)=0$ при всех $u\in\mathcal{D}(\Delta),\ m>0$. Однако

справедлива следующая

T е о р е м а 2^{-} (6). Пусть A — инфинитезимальный оператор сжимающей полугруппы класса ($C_{\scriptscriptstyle 0}$) в ${\mathcal H}$. Предположим, что комплексное число σ с $|\sigma|=1$ может быть выбрано так, что $|\operatorname{Im}(-\sigma Au,u)|\leqslant$ \leqslant γ $\mathrm{Re}\;(-\sigma Au,\;u)\;$ для некоторого $\gamma>0$. Пусть $\mathscr{H}_{\sigma A}\subset\mathscr{H}\subset\mathscr{H}_{\sigma A}^*-ue$ почка гильбертовых пространств со свойствами (1), построенная по оператору оА. Пусть а есть любое комплексное число такое, $\operatorname{Re} \left(aAu,\ u \right) \leqslant 0 \quad \forall u \in \mathcal{D}(A). \ \Pi yc$ ть $\hat{B} - \partial uccunatuвный оператор в$ $L(\mathcal{H}_{\sigma A}, \mathcal{H}_{\sigma A}^*)$ с нормой, строго меньшей, чем $|\alpha|$.

Tогда а $\hat{A}+\hat{B}$ (\in $L(\mathcal{H}_{\sigma A},\,\mathcal{H}_{A}{}^{*}))$ имеет сужение C_{lpha} в $\mathcal{H},$ которое порождает сжимающую полугруппу класса (C_0) , сильно непрерывную по α при фиксированном t.

Следствие из теорем 1 и 2. Пусть $\mathcal{H}=L^2(R^l)$. Пусть V=Myльruпликативный самосопряженный оператор в Ж. Предположим, что оператор $|V|^{\frac{\eta_2}{L}}H_0^{\frac{\eta_2}{L}}$ ограничен, где $H_0=-\frac{1}{2m}\Delta$. Построим пространство \mathcal{H}_+ следующим образом. Область $\mathcal{D}(|B|)=\mathcal{D}(V)$ пополним по норме $\|\cdot\|_{\mathcal{H}_{+}} = (\cdot, (|V|+1), \cdot)^{\frac{1}{2}}.$ Тог∂а

$$\exp\left(-itH\right) = \lim_{\varepsilon \downarrow 0} \lim_{n \to \infty} \left[\exp\left(-iH_{0,\varepsilon}t/n\right)\exp\left(-iVt/n\right)\right]^{n},$$

 $\exp\left(-itH
ight)=\lim_{arepsilon\downarrow0}\lim_{n o\infty}\left[\exp\left(-iH_{0,\;arepsilon}t/n
ight)\exp\left(-iVt/n
ight)
ight]^{n},$ где H определен методом билинейных форм и $H_{0,\;arepsilon}=-rac{1}{2\left(m+iarepsilon
ight)}\Delta$, $\varepsilon > 0$, $\hbar = 1$.

где

$$V(\mathbf{x}) = \begin{cases} 0, & h = 1. \\ 3. & \text{Пусть } \mathcal{H} = L^2(R^3). \\ \text{Пример 1. Рассмотрим} & V(\mathbf{x}) = \sum_{n=1}^{\infty} 2^{-n} W(\mathbf{x} - \mathbf{q}_n), \\ W(\mathbf{x}) = \begin{cases} |\mathbf{x}|^{-s/2}, & |\mathbf{x}| < 1, \\ 0, & |\mathbf{x}| \geqslant 1, \end{cases}$$

а q_n пробегает все точки в R^3 с рациональными координатами. Тогда $W \not \equiv L^{\scriptscriptstyle 2}(R^{\scriptscriptstyle 3})$, но $W \in L^{\scriptscriptstyle 1}(R^{\scriptscriptstyle 3}) \cap L^{\scriptscriptstyle 3/_2}(R^{\scriptscriptstyle 3})$. Поскольку $\sum_{n=1}^{\infty} || 2^{-n} || W(\cdot, -\mathbf{q}_n) ||_{L^{\scriptscriptstyle 3}} < \infty$

 $<\infty$ для a=1, $^3/_2,$ то $V\in L^1\cap L^{3/_2}.$ Каждая функция из $\mathscr{D}(H_0)=\mathscr{D}(\Delta)$ непрерывна и ограничена (см. (1), стр. 301). Поэтому $\mathcal{D}(V) \cap \mathcal{D}(H_0) = \{0\}$. В то же время оператор $|V|^{\frac{1}{2}} H_0^{\frac{1}{2}}$ -ограничен для всех $V \in$ $\in L^{3/2}(\mathbb{R}^3)$.

Пример 2. Пусть $V(\mathbf{x})$ — измеримая функция, удовлетворяющая условию $\|V\|_s^2 = \int |\mathbf{x} - \mathbf{y}|^{-2} \cdot |V(\mathbf{x})| \cdot |V(\mathbf{y})| d\mathbf{x} d\mathbf{y} < \infty$. Обозначим множество таких функций через S. В работе (2) показано, что S с нормой $\|\cdot\|_S$ есть полное нормированное пространство и оператор $\|V\|^{\frac{1}{2}}$ $H_0^{\frac{1}{2}}$ -orраничен. Тогда для каждого вещественного V из $S + L^{\infty}(R^3)$ справедливо следствие из теорем 1 и 2.

 Π р и м е р 3. Пусть $g(\mathbf{x})$ — произвольная вещественная измеримая функция с $|g(\mathbf{x})| \leqslant 1$ $\forall x \in R^3$. Рассмотрим

$$V_{\alpha}(\mathbf{x}) = \sum_{n=1}^{\infty} 2^{-n} W_{\alpha}(\mathbf{x} - \mathbf{q}_n) + \beta \cdot g(\mathbf{x}) \cdot |\mathbf{x}|^{-2}$$

$$\begin{split} V_{\alpha}\left(\mathbf{x}\right) &= \sum_{n=1}^{n} 2^{-n} W_{\alpha}\left(\mathbf{x} - \mathbf{q}_{n}\right) + \beta \cdot g\left(\mathbf{x}\right) \cdot |\mathbf{x}|^{-2}, \\ \text{fme } W_{\alpha}\left(\mathbf{y}\right) &= \begin{cases} \mid y \mid^{-2+\alpha}, & \mid \mathbf{y} \mid < 1, & \alpha \in (0,2), & \beta > \frac{-1}{2m} \\ 0, & \mid \mathbf{y} \mid \geqslant 1 \end{cases} \\ \text{kak} \quad \left\|u / \left|\mathbf{x}\right|\right\| \leqslant a \|\left(-\Delta\right)^{\frac{n}{2}} u\| + b \|u\|, \quad a \leqslant 2, \quad \forall u \in \mathcal{H}_{\Delta} \end{split}$$

Так $\|\|\sum_{\alpha} 2^{-n} W_{\alpha}(\cdot, -q_{\alpha})\|^{\frac{n}{2}} u\| \leqslant \varepsilon \|(-\Delta)^{\frac{n}{2}} u\| + b' \|u\| \quad \forall \varepsilon > 0, \quad u \in \mathcal{H}_{\Delta},$ оператор $|V_{\alpha}|^{\frac{1}{2}} = H_0^{\frac{1}{2}}$ -ограничен.

Таким образом, следствие из теорем 1 и 2 применимо к рассматриваемому потенциалу.

Автор выражает благодарность В. П. Гачку за постановку задачи и внимание к работе.

Институт теоретической физики Академии наук УССР

Поступило 30 VII 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ T. Kato, Perturbation Theory for Linear Operators, Grundleheren, 132, Berlin, 1966. ² B. Simon, Doctor Dissertation, Princeton University, 1970. ³ E. Nelson, J. Math. Phys., 5, 332 (1964). ⁴ A. B. Скороход, Теория вероятностей и ее применения, 1, 261, (1956). ⁵ H. F. Trotter, Proc. Am. Math. Soc., 10, 545 (1959). ⁶ W. G. Faris, Pacif. J. Math., 22, 47 (1967).