УДК 577.158.44

БИОХИМИЯ

В. Р. ШАТИЛОВ, В. Г. АМБАРЦУМЯН, член-корреспондент АН СССР В. Л. КРЕТОВИЧ

ИНДУЦИРУЕМАЯ В ПРИСУТСТВИП ИОНОВ АММОНИЯ НАДФ-СПЕЦИФИЧНАЯ ГЛЮТАМАТДЕГИДРОГЕНАЗА ХЛОРЕЛЛЫ

Нами было показано (1), что в клетках термофильного штамма Chlorella pyrenoidosa Pringsheim 82T под влиянием ионов аммония синтезируется de novo НАДФ-специфичная глютаматдегидрогеназа (НАДФ-ГДГ). В отличие от изученной ранее (2) конститутивной глютаматдегидрогеназы, работающий как с HAД, так и с $HAД\Phi$ [$HAД(\Phi)$ - $\GammaД\Gamma$], НАДФ-ГДГ имеет меньшую электрофоретическую подвижность. Для изучения свойств этой, индуцируемой, $\Gamma \Pi \Gamma$ и сравнения их со свойствами конститутивной $HA\Pi(\Phi)$ - $\Gamma\Pi\Gamma$ необходимо было получить препараты $HAД\Phi$ - $\GammaД\Gamma$, свободные от $HAД(\Phi)$ - $\GammaД\Gamma$. Кроме того, выделение НАДФ-ГДГ являлось бы окончательным доказательством ее синтеза. Это и входило в задачу настоящей работы. Для этой цели культуру вырашивали в среде Тамийя, содержащей в качестве источника азота KNO. в течение 3 суток до плотности 300-350 млн клеток мл. Выращивание проводили при непрерывном освещении (8 тыс. лк) люминесцентными лампами ЛД-40 и продувании воздухом, содержащим 0.5-0.8% СО2, при температуре 31-32°. После выращивания клетки собирали центрифугированием на суперцентрифуге С-44, промывали дистиллированной водой и переносили в свежую среду Тамийя, но содержащую в качестве источника азота $(NH_4)_2SO_4$ в концентрации $4.92 \cdot 10^{-3}$ мол л (138 мг N на 1л). Инкубацию в этой среде продолжали в течение 5 час. в ростовых условиях. Затем клетки собирали и промывали дистиллированной водой. Бесклеточные экстракты получали как описано ранее (*) с той разницей, что оттаивание проводили быстро при температуре 30° . Активность $\Gamma \Pi \Gamma$ определяли спектрофотометрическим методом по окислению НАДФ-Н при 340 ми в стандартной реакционной смеси. содержащей в объеме 3 мл: 0.5~M трис-HCl-буфер рН 8.7 или $8.2;\ 0.94\cdot 10^{-1}~M$ НАД-Н $1.2 \cdot 10^{-4} M$ $8 \cdot 10^{-3}$ M $8 \cdot 10^{-2}$ M α-кетоглютарат; НАДФ-Н; (NH₄)₂HPO₄ и фермент. Контролем служила аналогичная смесь без (NH4)2HPO4. За единицу активности принимали количество фермента, катализирующее окисление 1 имоля НАД (Ф)-Н за 1 мин., а удельную активность рассчитывали как число единиц активности за 1 мин. на 1 мг белка. Белок определяли по методу Лоури и др. (4) после диализа против 0,005 М фосфатного буфера рН 7,4. Электрофорез проводили по методу Дэвиса и Орнштейна (5, 6), а проявление активностей после электрофореза по методу Термена и др. $(^{7})$.

Для выделения и очистки НАДФ-ГДГ использовали метод высаливания сухим $(NH_4)_2SO_4$ и хроматографию на колонках с ДЭАЭ-деллюлозой фирмы «Ватман». Количество $(NH_4)_2SO_4$, необходимое для достижения требуемой степени насыщения, рассчитывали по номограмме Броновицкой и Горетова (*). НАДФ-ГДГ высаливалась вместе с НАД(Ф)-ГДГ при насыщении экстракта от 35 до 65%. После высаливания белок отделяли центрифугированием при $18\,000\,g$ в течение $10\,$ мин., растворяли в $0,01\,$ М фосфатном буфере рН 7,4, содержащем цистепн в концентрации $0,25\,$ мг/мл, и обессоливали на колонке с сефадексом Γ -25, уравновешенной тем же буфером. Активный элюат наносили на колонку с 10-32, уравновешенную указанным буфером с цистеином. Элюирова-

ние белков проводили ступенчато: сначала фосфатным буфером рН 7,4, возрастающей концентрации от 0,01 M до 0,1 M, а затем 0,1 M буфером, содержащим NaCl в возрастающей концентрации. Во всех элюатах всегда присутствовал цистеин в концентрации 0,25 мг/мл. На рис. 1 представлена типичная картина распределения Γ Д Γ при используемом нами

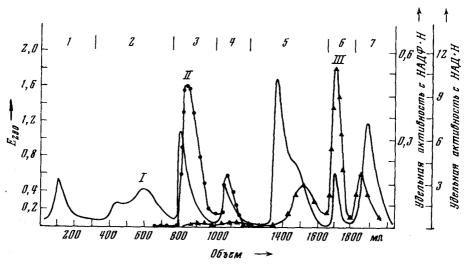


Рис. 1. Профиль элюции І'ДГ при хроматографии фракции 35-65% насыщения $(NH_4)_2SO_4$ на колонке с ДЭАЭ-32. Элюенты: I, 2, 3 и 4— соответственно 0,03 M; 0,05 M; 0,08 M и 0,1 M фосфатный буфер рН 7,4, содержащий цистеин в концентрации 0,25 мг/мл; 5, 6 и 7— соответственно 0,1 M; 0,2 M и 0,3 M NaCl в 0,1 M фосфатном буфере рН 7,4, содержащем цистеин в концентрации 0,25 мг/мл. I— поглощение при 280 мµ; II— ГДГ-активность с НАДФ-Н; III— ГДГ-активность с НАД-Н

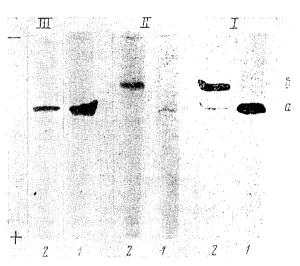

ступенчатом элюировании с ДЭАЭ-32. Такая же картина наблюдалась при использовании ДЭАЭ-11. Белковый пик, который элюировался фосфатным буфером рН 7,4 в области от 0,05 до 0,08 M, проявляет активность спектрофотометрически в условиях опыта только с НАДФ-Н и практически никакой активности с НАД-Н. Конститутивная НАДФ-ГДГ

Таблица 1 Разделение и очистка НАДФ- и НАД(Ф)-ГДГ хлореллы

Этап очистки	Белок, мг	Удельная активность		Общая активность			
		с надф-н	с над-н	с надФ-н	с над-н	Степень очистки	Выход,
Экстракт после центрифугирования при 410 000 g	1710	0,064	0,212	109,3	3 63,0	0,0	-
Высаливание (NH ₄) ₂ SO ₄ , фракция 35—65% насыщения	623	0,080	0,257	-		_	-
Хроматография на колонке с ДЭАЭ-32 пик 3 пик 6 Высаливание (NH₄)₂SO₃ до 90% насыщения и обессоливание на	30,4 36,7	0,413 0,917	Следы 5,500	12,6 33,6	Следы 202,0	14,3 26,0	24,3 55,7
колонке с серадексом Г-25 пик 3 пик 6	_	1,830 1,200	Следы 6,900	<u>-</u>	_	63,0 37	_

в основном элюировалась в области от 0.1 до 0.2~M NaCl в 0.1~M фосфатном буфере рН 7.4, как это было уже установлено ранее (2).

Результаты разделения и очистки ГДГ хлореллы представлены в табл. 1. Степень очистки НАДФ-ГДГ после хроматографии на колонке с ДЭАЭ-32 составляет 10—15 раз при выходе 25%. Высаливание (NH₄) $_2$ SO₄ до 90% с последующим обессоливанием приводит к увеличению удельной активности НАДФ-ГДГ в 3—4,5 раза, и, следовательно, степень очистки увеличивается до 40—60 раз. Если считать исходным экстракт, полученный после разрушения и центрифугирования при

 $18\,000\,$ g, то степень очистки составит 120—180 раз, поскольку замораживание и оттаивание с последующим центрифугированием при $110\,000\,g$

приводит к увеличению удельных активностей в 3 раза (3).

Таким образом, индуцируемый и конститутивный ферменты легко разделяются на ДЭАЭ-целлюлозах в силу своих различных физико-химических свойств. Зимограммы ГДГ, представленные на рис. 2, подтверждают данные табл. 1. Видно, что пик $\bar{3}$ содержит НАД Φ -ГДГ, а пик $\bar{6}$ — $HA\Pi(\Phi)$ - $\Gamma\Pi\Gamma$. Следует сказать, что хотя спектрофотометрически активность с НАД в пике 3 практически не обнаруживалась ни в прямом, ни в обратном направлениях реакции, все-таки при электрофорезе, в силу высокой чувствительности этого метода, проявлялась очень слабая полоса с НАД+ на уровне конститутивного фермента. Это указывало на незначительную примесь НАД (Ф)-ГДГ в пике 3, содержащем пидуцированную НАДФ-ГДГ. Если пик 3 высолить (NH₄) 2SO₄ до 90% от полного насыщения, обессолить затем на колонке с сефадексом Г-25 и подвергнуть рехроматографии на ДЭАЭ-32, то можно получить НАДФ-ГДГ. абсолютно свободную от НАД (Ф)-ГДГ. Однако, такие препараты НАДФ-ГПГ были очень разбавленными и быстро инактивировались в процессе хранения при -15° . Поэтому для изучения свойств НАДФ-ГДГ мы использовали препараты после первой хроматографии, которые хранили при -15° после высаливания до 90%. По мере надобности порции этого пренарата обессоливали на колонке с сефадексом Г-25 и использовали для анализа. Активность таких препаратов, как уже указывалось. была в 40-60 раз выше, по сравнению с активностью в исходном экстракте. Незначительная примесь конститутивного фермента не обнаруживалась спектрофотометрически в пределах используемых концентраций препарата НАДФ-ГДГ и, следовательно, не искажала истинную картину при пзучении кинетических и других свойств НАДФ-ГДГ. Индуцируемая $HA\Pi\Phi$ - $\Gamma\Pi\Gamma$ резко отличается от конститутивной $HA\Pi(\Phi)$ - $\Gamma\Pi\Gamma$ как по

своим физическим, так и кинетическим свойствам. НАДФ-ГДГ является во всех отношениях более чувствительным ко всем воздействиям, более лабильным ферментом. Например, при прогревании препарата НАДФ-ГДГ при 50° в течение 5 мин. активность терялась уже на 50° , а при 60° происходила полная инактивация. В то же время конститутивная НАД(Ф)-ГДГ сохраняла полностью активность при 70° и при 80° инактивировалась на 83.2° (табл. 2).

Таблица 2 Тепловая инактивация ГИГ хлореллы

Т-ра при прогревании 5 мин., °C	Оставшаяся а	активность, %	Т-ра при	Оставшаяся актявность, %		
	индуцируемая НАДФ-ГДГ	конститутивная НАД(Ф)-ГДГ	прогревании 5 мин., °C	индуцируе- мая НАДФ- ГДГ	конститутивная НАД(Ф)-ГДГ	
20 40 50	100 78 50	100	60 70 80	0 0 0	100 100 17	

Полученные нами данные, несомненно, свидетельствуют о том, что в клетках Chlorella pyrenoidosa Pringsheim 82T в ответ на NH_4^+ синтезируется de novo $\Gamma Д \Gamma$, специфичная к $HA Д \Phi$. Этот фермент, по-видимому, обладает ярко выраженной синтетической функцией, поскольку, во-первых, образуется в ответ на NH_4^+ и, во-вторых, исчезает, когда потребность в нем отпадает, например при перенесении клеток после индукции в среду, содержащую KNO_3 (1).

Эти данные, наряду с другими, полученными в нашей лаборатории (9-12), показывают, что NH₄+-ионы играют важнейшую регуляторную роль в клетках хлореллы и у высших растений.

Институт биохимии им. А. Н. Баха Академии наук СССР Москва Поступило 3 II 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

⁴ В. Р. Шатилов, Г. С. Калошина, В. Л. Кретович, ДАН, 194, 964 (1970).

² В. Р. Шатилов, З. Г. Евстигнеева, В. Л. Кретович, Биохимия, 34, 409 (1969).

³ В. Р. Шатилов, З. Г. Евстигнеева, В. Л. Кретович, Прикл. биохим. и микробиол., 2, 667 (1966).

⁴ О. Н. Lowry, N. J. Rosenbrough et al., I. Biol. Chem., 193, 265 (1951).

⁵ В. J. Davies, Ann. N. Y. Acad. Sci., 121, Part 2, 404 (1964).

⁶ L. Ornstein, Ann. N. Y. Acad. Sci., 124, Part 2, 321 (1964).

⁷ D. A. Thurman, C. Palin, M. V. Laycock, Nature, 207, 193 (1965).

⁸ З. С. Броновицкая, В. Г. Горетов, В. Л. Кретович, Прикл. биохим. и микробиол., 3, 707 (1971).

⁹ В. Л. Кретович, Т. И. Карякина и др., ДАН, 202, № 1 (1972).

¹⁰ В. Л. Кретович, Т. И. Карякина, Л. И. Сидельникова, ДАН, 202, № 1 (1972).

¹¹ Н. Г. Томова, З. Г. Евстигнеева, В. Л. Кретович, Биохимия, 34, 249 (1969).

¹² З. Г. Евстигнеева, К. В. Асеева и др., Биохимия, 36, 389 (1971).