УДК 513.6

MATEMATUKA

Академик АН БССР В. П. ПЛАТОНОВ, В. И. ЯНЧЕВСКИЙ

СТРУКТУРА УНИТАРНЫХ ГРУПП И КОММУТАНТ ПРОСТОЙ АЛГЕБРЫ НАД ГЛОБАЛЬНЫМИ ПОЛЯМИ

Пусть V-n-мерное линейное пространство (правое) над конечномерным телом D. $\Phi-$ невырожденная косоэрмитова форма на $V\times V$ относительно некоторого инволютивного антиавтоморфизма $j\colon d\to \bar d$ тела D. $S=(d\in D\,|\,\bar d=d)$ — подмножество симметричных элементов D. Если K- центр D, то $\dim_{\mathbf K} D=m^2$ и предполагаем, что $k=K\cap S\neq K,$ т. е. j- инволюция второго рода. В случае char K=2, как обычно, считаем, что

$$\forall v \in V \quad \exists \lambda(v) \in D: \ \Phi(v,v) = \lambda(v) - \overline{\lambda(v)}.$$

 $U(\Phi)$ — унитарная группа формы Φ ; $TU(\Phi)$ — подгруппа $U(\Phi)$, порожденная трансвекциями. GL(n,D) — полная линейная группа над D, SL(n,D) — подгруппа элементов с приведенной нормой (см. $\binom{1}{2}$), равной единице. $SU(\Phi) = SL(n,D) \cap U(\Phi)$.

В дальнейшем предположим, что index $\Phi > 0$.

Известная гипотеза о группах SL(n,D) и $SU(\Phi)$, содержащаяся в общей гипотезе Кнезера — Титса об односвязных алгебраических группах (см. (3, 4)), состоит в следующем: группы SL(n,D), n > 1, и $SU(\Phi)$ порождаются трансвекциями или, что эквивалентно, факторы этих групп по центру являются простыми абстрактными группами. Нетрудно показать (см. (5)), что гипотеза для SL(n,D) эквивалентна утверждению: коммутант GL(1,D) совпадает с SL(1,D). В такой форме эту гипотезу высказали Артин и Таннака еще в 1943 г. (см. 5 , 6)). Ниже мы увидим, что для $SU(\Phi)$ также все сводится к некоторой гипотезе о структуре тела D с инволютией

Отметим, что в настоящее время гипотеза о SL(n,D) доказана для p-адических полей (6) и алгебраических числовых полей (5), а гипотеза для $SU(\Phi)$ — только для p-адических полей (7).

Цель этой статьи — доказательство гипотезы для любых глобальных

полей. Основной является следующая теорема.

Теорема 1. Над глобальным полем K группа $SU(\Phi) = TU(\Phi)$, τ . е. порождается трансвекциями, и является коммутантом группы $U(\Phi)$.

Предлагаемое ниже доказательство теоремы 1 существенно зависит от доказательства гипотезы для SL(n,D). В частности, необходимо доказать гипотезу о SL(n,D) для функционального глобального поля. Незначительная модификация рассуждений Ванга (5 , 7) с использованием теории полей классов для функциональных полей (9) позволяет доказать вполне аналогичным, но столь же длинным и сложным путем следующую теорему.

T е о р е м а 2. Если K — глобальное функциональное поле, то комму-

тант [GL(n,D), GL(n,D)] = SL(n,D).

Замечание 1. В последнее время первому из авторов удалось найти новый подход к гипотезе Артина, основанный на алгебро-геометрических соображениях и не использующий арифметики поля. К. Представляется весьма вероятным, что новый метод позволит получить доказательство гипотезы Артина в общем случае.

Пусть $\Sigma(D)$ — подгруппа мультипликативной группы D^* тела D с инволюцией j, порожденная $(S \setminus \{0\})$, т. е. подмножеством ненулевых симметричных элементов. $N_{\rm red}$ — приведенная норма в D над K. $\Sigma'(D) = N_{\rm red}^{-1}$ (k^*) . Нетрудно показать, что $\Sigma(D) \subset \Sigma'(D)$.

Предложение 1. Для произвольного поля K и любых $a,b \in D^*$

коммутатор $[a,b] \in S^5$, в частности, $[D^*,D^*] \subset \Sigma(D)$. Доказательство. Если $b \in S$, то $aba^{-1}b^{-1} = (ab\bar{a})\,(\bar{a}^{-1}a^{-1})\,b \in S^3$. Аналогично для $a \in S$. Поэтому можно считать, что $a, b \notin S$. Так как $\dim_{\mathbf{K}} D = m^2$, то $\dim_{\mathbf{k}} D = 2m^2$, $\dim_{\mathbf{k}} S = m^2$. Рассмотрим линейное пространство $(S + \lambda a) = \{s + \lambda a \mid s \in S, \ \lambda \in k\}$. Если $x \in D^*$, то $\dim_{\mathbb{A}}(xS) = m^2$, $\dim_{\mathbb{A}}(S + \lambda a) = m^2 + 1$. Значит, $(xS) \cap (S + \lambda a) \neq \phi$, т. е. $x \in (S + \lambda a)S$, ибо $(S \setminus \{0\})^{-1} = (S \setminus \{0\})$. Следовательно, $b = s_1(s_2 + \lambda a)$, где $s_1, s_2 \in S$.

$$aba^{-1}b^{-1} = as_{1}(s_{2} + \lambda a) \ a^{-1}(s_{2} + \lambda a)^{-1} \ s_{1}^{-1} =$$

$$= as_{1}s_{2}(1 + \lambda s_{2}^{-1}a) \ a^{-1} \left[(1 + \lambda as_{2}^{-1}) s_{2} \right]^{-1} s_{1}^{-1} =$$

$$= as_{1}s_{2}a^{-1}a \ (1 + \lambda s_{2}^{-1}a) \ a^{-1}s_{2}^{-1} (1 + \lambda as_{1}^{-1})^{-1} s_{1}^{-1} =$$

$$= as_{1}s_{2}a^{-1} (1 + \lambda as_{2}^{-1}) s_{2}^{-1} (1 + \lambda as_{2}^{-1})^{-1} s_{1}^{-1} =$$

$$= as_{1}\bar{a}\bar{a}^{-1}s_{2}a^{-1} (1 + \lambda as_{2}^{-1}) s_{2}^{-1} (1 + \lambda as_{2}^{-1}) (1 + \lambda as_{2}^{-1})^{-1} (1 + \lambda as_{2}^{-1}) s_{1}^{-1} =$$

$$= (as_{1}\bar{a}) (\bar{a}^{-1}s_{2}a^{-1}) \left[(1 + \lambda as_{2}^{-1}) s_{2}^{-1} (1 + \lambda as_{2}^{-1}) \right] \left[(1 + \lambda as_{2}^{-1}) (1 + \lambda as_{2}^{-1}) \right]^{-1} s_{1}^{-1} \in S^{3}.$$

Предложение 1 доказано.

Замечание 2. Аналогичное доказательство включения $[D^*, D^*] \subset \Sigma(D)$ независимо получено Л. Н. Васерштейном (неопубликовано). Повидимому, утверждение $[a,b] \in S^5$ можно усилить; не исключено, что $[a,b] \in S^3$.

Из предложения 1 и результатов (10) непосредственно следует Предложение 2. Фактор-группа $U(\Phi)/TU(\Phi) \cong D^*/\Sigma(D)$.

Этот изоморфизм получается естественным образом с помощью отображения спинорной нормы $N_{\rm Spin}$ (см. (10)). Оказывается, $N_{\rm Spin}(U(\Phi)) = D^*$, а $N_{\rm Spin}(TU(\Phi)) = \Sigma(D)$. Усовершенствуя эти рассуждения из (10), можно доказать

Предложение 3. $N_{\rm Spin}(SU(\Phi)) = \Sigma'(D)$, значит,

$$SU(\Phi) / TU(\Phi) \cong \Sigma'(D) / \Sigma(D).$$

Таким образом, из предложения 2 следует, что для произвольных полей

$$SU(\Phi) = TU(\Phi) \Leftrightarrow \Sigma'(D) = \Sigma(D).$$

Предложение 4. Пусть для всякого нечетномерного тела D с инволюцией над полем K справедлива гипотеза Артина: $SL(1,D) = [D^*,D^*]$. Eсли $D = D(2) \times D(p_1) \times \ldots \times D(p_r)$ — разложение D в прямое произведение тел примарных взаимно простых степеней, то $\Sigma'(D) = \Sigma(D) \Leftrightarrow$ $\Leftrightarrow \Sigma'(D(2)) = \Sigma(D(2))$, в частности, если D — тело нечетной степени, то $\Sigma'(D) = \Sigma(D)$.

Доказательство. Ограничимся доказательством последнего равенства, к которому естественно сводится общий случай, если рассмотреть инволюции, индуцируемые ј на прямых сомножителях, и использовать соответствующие разложения для $\Sigma(D)$ и $\Sigma'(D)$ (см. (11), гл. 10). Итак, пусть степень m тела D нечетна. Для всякого $a \in \Sigma'(D)$ приведенная норма $N_{\rm red}(a) = c \in k$. Тогда $N_{\rm red}(a^mc^{-1}) = c^mc^{-m} = 1$, значит, $a^mc^{-1} \in SL(1,D) = [D^*,D^*]$. Из предложения 1 следует, что $a^m \in \Sigma(D)$. Далее, $N_{\rm red}(a)=N_{\rm red}(\bar a),$ поэтому $a=\bar a\omega,$ где $\omega\in SL(1,D),$ $a^2=a\bar a\omega\in$

 $\in \Sigma(D)SL(1,D) = \Sigma(D)$. Tak kak (2,m) = 1, to $a \in \Sigma(D)$, t. e. $\Sigma'(D) = \Sigma(D)$.

Основная лемма. Пусть D— тело с инволюцией j над глобальным полем K. Для всякого $a \in (N_{\rm red}(D) \cap k^*)$ существует такой элемент $x_a \in D$, что $K[x_a]$ — максимальное коммутативное подтело D, определенное над k, и $N_{K[x_n] \mid K}(x_a) = a$.

Доказательство. Для всякого нормирования v поля K через K_v будем обозначать пополнение исля K. Пусть v_1, v_2, \ldots, v_r — все нормирования поля K, относительно которых тело D разветвлено. Заметим, что $K_{v_i}=k_{v_i},\ i=1,2,\ldots,r$. Действительно, если v_i —архимедово нормирование, тогда K_{v_i} — поле вещественных чисел и $K_{v_i}=k_{v_i}$; для неархимедова нормирования v_i это следует из того факта, что над K_{v_i} нет тел с инволюциями второго рода (см. $\binom{11}{i}$, гл. $\binom{10}{i}$).

Докажем, что для всякого неархимедова v_i существует неприводимый многочлен $f(x) \in k_v$, [x] степени m со свободным членом $(-1)^m a$.

Нетрудно видеть, что можно ограничиться случаем, когда a — целый элемент в k_{v_i} . Если t_i — униформизирующий параметр k_{v_i} , то $a = \varepsilon_i t_i^a$, $a \ge 0$, где ε_i — единица кольца целых элементов. Пусть сначала a = 0. Тогда редукция по модулю (t_i) сводит доказательство к случаю конечного поля. Для конечного поля наше утверждение доказывается индукцией по m с учетом цикличности конечных расширений и транзитивности нормы.

Отметим, что получаемое таким образом расширение поля k_{v_i} будет неразветвленным.

Пусть теперь a>0. Достаточно, очевидно, рассмотреть случай, когда $a\leqslant m$. Если d=(a,m), $a=a_0d$, то существует k_{v_i} -неприводимый многочлен $f_0(z)\leqslant k[z]$ степени d со свободным членом $(-1)^da$. Действительно, все сводится к случаю a=0. Пусть z_i — корень $f_0(z)$, тогда $k_{v_i}[z_i]$ — неразветвленное расширение степени d и $N_{kv_i}[z_i]$ / $k_{v_i}(z_i)=a$. Нетрудно видеть, что $z_i=\tilde{\varepsilon}_it^{a/d}$. Тогда непосредственно проверяется, что многочлен $\phi_0(x)=x^{m/d}+z_ix+(-1)^{m/d}z_i$ неприводим над $k_{v_i}[z_i]$ и его корень $x_a^{(i)}$ обладает свойством $N_{kv_i}[z_i,x_a^{(i)}]/k_{v_i}(x_a^{(i)})=a$. Остается заметить, что, по построению (если учесть вид многочлена $\phi_0(x)$), $[k_{v_i}[x_a^{(i)}]:k_{v_i}]=m$. Следовательно, $x_a^{(i)}$ является корнем неприводимого многочлена $f_i(x)$ степени m со свободным членом $(-1)^m a$.

В случае, если v_i – архимедово нормирование, положим $f_i(x) = x^m + a$. В архимедовом случае m должно быть четным числом и $k_{v_i}[x_a^{(i)}]$ — поле комплексных чисел, так как a > 0, ибо является приведенной нормой (см. $(^2)$, гл. 10). По аппроксимационной теореме, примененной к нормированиям v_i, v_2, \ldots, v_r и коэффициентам многочленов $f_i(x)$, существует многочлен $f(x) \subseteq k[x]$ степени m со свободным членом $(-1)^m a$, сколь угодно близкий к $f_i(x)$ для всех нормирований v_1, v_2, \ldots, v_r . По лемме Краснера, для неархимедовых $v_i f(x)$ будет неприводим над k_{v_i} . Пусть x_a — корень многочлена f(x). Тогда $K[x_a]$ изоморфпо максимальному коммутативному подтелу D. Действительно, для всякого неархимедова v_i степень $[K_{v_i}[x_a]:K_{v_i}]=m$, а для архимедова $[K_{v_i}[x_a]:K_{v_i}]=2$. Значит, $K_{v_i}[x_a]=(K[x_a])_{v_i}$ является полем разложения для $D\otimes K_{v_i}$. Так как для всех $v\neq v_i$ D неразветвлено, то $D\otimes_K K[x_a]$ неразветвлена во всех v. Следовательно (см. $(^2)$, гл. $(^$

Доказательство теоремы 1. Пусть $\sigma' \in \Sigma'(D)$. $N_{\text{red}}(\sigma') = a$. Пусть x_a — элемент, построенный в основной лемме. Тогда $N_{\text{red}}(\sigma'x_a^{-1}) = 1$. Так как минимальный многочлен x_a лежит в k[x], то $\bar{x}_a = gx_ag^{-1}$, $g \in D^*$. Если $\bar{g} \neq -g$, то $\bar{x}_a(g + \bar{g}) = (g + \bar{g})x_a \in \Sigma(D)$, значит, $x_a \in \Sigma(D)$. Если

 $\bar{g} = -g$, то $gx_a = -gx_a$ и $x_a = g^{-1}(gx_a)$. Существует кососимметричный элемент $\alpha \in K$. Тогда $x_a = (\alpha^{-1}g^{-1}) \, (\alpha gx_a) \in \Sigma(D)$. Теорема 1 теперь непосредственно следует из теоремы Ванга, теоремы 2 и предложений 1, 3.

Институт математики Академии наук БССР Поступило 5 IX 1972

Белорусский государственный университет им. В. И. Ленина Минск

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Н. Бурбаки, Алгебра: модули, кольца, формы, М., 1966. ² А. Вейль. Основы теории чисел, М., 1972. ³ J. Tits, Ann. Math., 80, № 2, 313 (1964). ⁴ В. П. Платонов, Изв. АН СССР, сер. матем., 33, № 2, 1214 (1969). ⁵ S. Wang, Am. J. Math., 72, № 2, 323 (1950). ⁶ T. Nakayama, Y. Matsushima, Proc. Imper. Acad. Japan, 19, 21 (1943). ⁷ J. Dieudonne, Sur les groupes dassuques, Paris, 1948. ⁸ S. Wang, Ann. Math., 51, № 2, 124 (1950). ⁹ E. Artin, J. Tate, Class Field Theory, Harvard, 1961. ¹⁰ G. Wall, Publ. Math. I.H.E.S., № 1, 5 (1959). ¹¹ A. Albert, Structure of Algebras, N. Y., 1939.