Л. С. ХАЙКИН, Л. В. ВИЛКОВ, А. Ф. ВАСИЛЬЕВ, Н. Н. МЕЛЬНИКОВ, Т. Ф. ТУЛЯКОВА, М. Г. АНАШКИН

ПОВОРОТНАЯ ИЗОМЕРИЯ ВОКРУГ СВЯЗИ РС В CH₂ClP (= S) Cl₂

(Представлено академиком М. И. Кабачником 29 IX 1971)

В настоящее время данные о поворотной изомерии около связи $| \ |$ = P—C— ограничены. По результатам колебательной спектроскопии $(^1,^2)$ в соединениях типа $CH_2XP(=Y)Z_2$ (где X=CI, CH_3- , CH_2CI- : Y=O, S; Z=F, CI) предполагается существование смесей двух изомеров в жидкой фазе и лишь одного из изомеров в твердой фазе.

Для CH₂ClP (=S) Cl₂ были получены (⁷) и.-к. спектры жидкого и твердого образцов и раствора в CCl₄ в области 3000—400 см⁻⁴, а также спектры к.р. жидкого вещества, и сделано отнесение частот основных нормальных колебаний. В низкочастотной области спектров жидкой фазы и растворов обнаружено расщепление полосы у, PCl₂ на две: 464 и 456 см⁻¹. В твердой

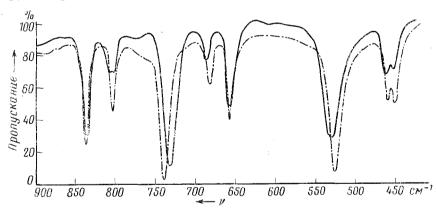


Рис. 1. М.-к. спектры растворов $\mathrm{CH_2CIP}(=\mathrm{S})\,\mathrm{Cl_2}$ (получены в кювете КВг, $d=0,125\,$ мм). Пітрих-пунктиром обозначены спектры в пеполярных растворителях: в $\mathrm{CCl_4},\ C=0,2131\,\%$ (область $900-850\,$ см $^{-1},\ 700-400\,$ см $^{-1}$), и в изооктане, $C=0,5253\,\%$ (область $850-700\,$ см $^{-1}$); сплошной линией — в полярных растворителях: в нитрометане, $C=0,3107\,\%$ (область $900-730\,$ см $^{-1}$), и в ацетонитриле, $C=0,4087\,\%$ (область $730-400\,$ см $^{-1}$)

фазе полоса 464 см⁻¹ исчезает. Это и послужило основанием для предположения об изменении изомерного состава при переходе к твердой фазе.

В настоящей работе проведено электронографическое исследование паров $CH_2CIP(=S)CI_2$. Кроме того, получены и.-к. спектры этого вещества в газовой фазе в области 900—400 см⁻¹ при различных температурах. Были также дополнительно исследованы и.-к. спектры растворов $CH_2CIP(=S)CI_2$ в растворителях с различной полярностью, что, в частности, подтвердило выводы, сделанные в работе (1).

В и.-к. спектрах растворов (рис. 1) полоса v_s PCl₂ раздваивается (461 и 452 см⁻¹), причем в случае раствора в CCl₄ интенсивность полосы 452 см⁻¹ выше, а в случае раствора в ацетонитриле происходит перераспределение интенсивностей полос. Низкочастотная полоса 452 см⁻¹, следовательно,

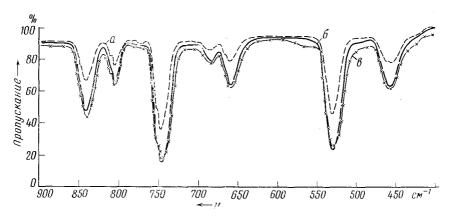


Рис. 2. И.-к. спектры $\mathrm{CH_2ClP}(=\mathrm{S})\mathrm{Cl_2}$ в газовой фазе при температурах 55° (а), 85° (б) и 125° С (в) (получены в кювете КВг, d=50 мм)

принадлежит колебанию менее полярного поворотного изомера. В то же время апомальное расщепление полосы $\nu_{\rm p}$ CH $_{\rm 2}$ 803 см $^{-1}$ на две полосы (801 н 808 см $^{-1}$) при нереходе от раствора в изооктане к раствору в интрометане нельзя объяснить поворотной изомерией.

В п.-к. спектрах газовой фазы (рис. 2) полоса v_s PCl₂ имеет иптрокий, размытый, песимметричный коптур, практически не меняющийся с изменением температуры, что, как и в случае растворов, может быть объяснено паличием поворотных изомеров с небольной разностью энергий ($\Delta E/RT \approx 0$).

Решающим доказательством существования смеси двух инфоротиых иземеров $\mathrm{CH_2CIP}(=\mathrm{S})\mathrm{Cl_2}$ в газовой фазе являются результаты электронографического исследования. Электронограммы наров нолучены при $t \sim 100^\circ$ С. Расшифровка производилась на основе кривой $sM_{\mathrm{зисл}}(s)$ (рис. 3). При этом осуществлялась минимизация функционала

$$Q_{\text{норм}} = \left\{ \sum_{n=1}^{N} \left[sM\left(s_{n}\right)_{\text{әкен}} - KsM\left(s_{n}\right)_{\text{теор}} \right]^{2} \middle/ \sum_{n=1}^{N} \left[sM\left(s_{n}\right)_{\text{¬кеп}} \right]^{2} \right\}^{\frac{1}{2}},$$

где K — нормирующий множитель, с применением методики поочередного уточнения структурных параметров по программе, написацной в системе АЛГОЛ для БЭСМ-6. Функционал $Q_{\text{норм}}$ вычисляяся по всему интервалу кривой $sM_{\text{вкен}}(s)$ с единичной весовой фулкцией. Результаты минимизаций представлены в табл. 1.

В ходе расшифровки первопачально испытывались модели четырех возможных поворотных изомеров молекулы $CH_2CIP(=S)CI_2$:

$$P_{1}C \xrightarrow{H} H \xrightarrow{S} H \xrightarrow{H} Cl_{(3)} \xrightarrow{H} Cl_{(2)} Cl_{(2)} \xrightarrow{Cl_{(2)}} H \xrightarrow{Cl_{(2)}} H \xrightarrow{Cl_{(2)}} H \xrightarrow{H} Cl_{(2)} Cl_{(2)} \qquad (IV) \ \phi = 180^{\circ}$$

Согласование с экспериментом оказалось наилучшим в случае модели I. Однако обращало на себя внимание, что разностные кривые $\Delta f(r)$, соответствующие моделям I и II (рис. 4), в области 3,80—4,00 Å отражают противоположные тенденции. В случае модели III минимизация при варыпровании ϕ — угла вращения группы $\mathrm{CH}_2\mathrm{Cl}$ вокруг связи PC, по-видимому, должна привести к модели I: указаниая в табл. 1 величина ϕ = 20° есть мичимальное значение в интервале варьирования ϕ в одном из циклов

	Модели						
Параметры	смесь I и II в соотношении 1:1	I	II	III			
	Межъядерные рас	стояния г	ij, Å	,			
PCI _(1,2)	2,028 (0,005)	2,026	2,028	2,036			
P = S	1,888 (0,010)	1,894	1,894	1,908			
PC	1,760 (0,025)	1,765	1,765	1,790			
CCl ₍₃₎	1 ,735 (0,025)	1,745	1,730	1,735			
	Валентные у	глы, град.					
Cl ₍₁₎ PCl ₍₂₎	101,0 (1,0)	100,5	101,5	101,5			
$Cl_{(1,2)}P = S$	114,5 (1,5)	114,0	114,5	114,5			
CP = S	113,5 (2,5)	114,5	112,0	117,5			
PCCl ₍₃₎	113,5 (3,0)	114,0	1 13,0	115,0			
φ	I 0 (фиксирован) II 132 (5)	6	132	20 (гранич- ное значе- ние)			
Сред некв ад	ратичные амплитуды	ы колебан	ий паряд	$_{ip}^{i}$			
PCl _(1,2)	0,060 (0,006)	0,055	0,060	0,060			
P = S	0,060 (0,012)	0,050	0,060	0,055			
PC	0,07 (0,03)	0,045	0,05	0,04			
$\mathrm{CCl}_{(3)}$	0,05 (0,03)	0,05	0,065	0,045			
$\operatorname{Cl}_{(1)} \ldots \operatorname{Cl}_{(2)}$	0,08 (0,015)	0,07	0,08	0,09			
$Cl_{(1,2)} \dots S$	0,10 (0,015)	0,100	0,100	0,100			
cs	0,09 (0,02)	0,12	0,10	0,14			
P Cl ₍₃₎	0,09 (0,015)	0,07	0,08	0,08			
$\mathrm{Cl}_{(1,2)}$ C	0,07 (0,02)	0,09	0,07	0,10			
Cl ₍₁₎ Cl ₍₃₎	I 0,45 (0,04) II 0,10 (0,07)	0,18	0,13	0,18			
Cl ₍₂₎ Cl ₍₃₎	I 0,15 (0,04) II 0,11 (0,09)	0,13	0,19	0,19			
Cl ₍₃₎ S	I 0,15 (0,08) II 0,11 (0,08)	0,12	0,11	0,12			
Q _{норм}	0,1334	0,1371	0,1500	0,1668			

^{*} В скобках приведены ошибки определения параметров. Ошибки для r_{ij} п l_{ij} рассчитаны по формулам Бонема-Бартелла; в случае валентных углов ошибки соответствуют стандартным отклонениям в r_{ij} , определяющим эти углы.

Таблица 2 Сопоставление основных геометрических параметров тио- и оксипроизводных фосфора $(r_{ij}$ в Å, валентные углы — в град.)

Соединение	r (PCI)	r (P=S)	r (P=0)	∠ ClPCl	∠ CIP=S	∠ClP=0	Источник
$CH_2ClP (= S) Cl_2$ $PSCl_3$ $CH_3P (= O) Cl_2$ $POCl_3$	2,028±0,005 2,011±0,003 2,032±0,009 1,993±0,003	1,885±0,005		101,8+0,2 101,8+0,5		 114,5±0,5 114,7 <u>+</u> 0,2	Настоящее исследование (°) (°) (°)

минимизации. Модель IV была отвергнута без минимизации: анализ показал, что наличие двух одинаковых расстояний $\mathrm{Cl}_{(4,2)}\ldots\mathrm{Cl}_{(3)}$ исключает в этом случае возможность хорошего согласования с экспериментом, поскольку пик кривой $f_{\mathfrak{PKCR}}(r)$ в области $\sim 4,50$ Å соответствует вкладу лишь одного расстояния типа $\mathrm{Cl}\ldots\mathrm{Cl}$ или $\mathrm{S}\ldots\mathrm{Cl}$.

Учитывая сказанное, была предпринята минимизация для смеси конформеров I и II в соотношении 1:1. В результате согласование с $f_{\text{енси}}(r)$

в области 3,80—4,00 Å существенно улучшилось. Правда, это мало отразилось на величине функционала $Q_{\text{норм}}$ (табл. 1), так как он рассчитывался, как уже отмечалось, по всему интервалу кривой $sM_{\text{эксп}}(s)$. Поэтому не рассматривались другие соотношения между изомерами.

Таким образом, CH_2ClP (= $=S)Cl_2$ существует в газовой фазе в виде смеси конформеров I и II в соотношении 1:1 или близком к этому. По-видимому, те же изомеры присутствуют в жидкой фазе и в растворах. Учитывая характер изменения сокинешонто интенсивностей полос дублета, соответствующего v_s PCl₂, в случае различных растворителей и то, что в твердой фазе (1) остается низкочастотная полоса этого дублета, можно предположить, что «вымораживается» более полярный изо-Поскольку разность энергий поворотных изомеров, присутствующих в газовой и жидкой фазах, должна быть невелика, можно сделать вывод, что решающим фактором при «вымораживании» одного из поворотных изомеров является разность кристаллизации энергий этих изомеров.

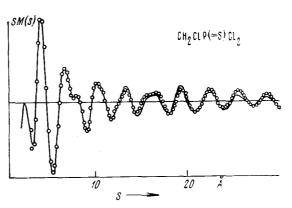


Рис. 3. Кривые SM(S) для $\mathrm{CH_2ClP}(=S)\,\mathrm{Cl_2}$. Точками обозначена экспериментальная кривая. сплошной линией— теоретическая для смеси изомеров I и II в соотношении 1:1

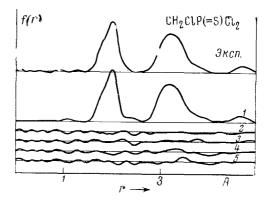


Рис. 4. Кривые f(r) для $\mathrm{CH_2CIP}(=\mathrm{S})\mathrm{Cl_2}$. I — теоретическая f(r) для смеси изомеров I и II в соотношении 1:1; 2 — разностная кривая $\Delta f(r)$ экспериментальной $f_{\mathrm{эксп}}(r)$ и кривой I; 3, 4, 5 — $\Delta f(r)$ для изомеров I , II и III соответственно

Сопоставление найденных нами геометрических параметров молекулы $CH_2CIP(=S)Cl_2$, а также $PSCl_3$ (3), с геометрическими параметрами аналогов, содержащих фосфорильную связь P=O (2, 4), показывает, что закономерности изменения сходственных нараметров в каждом случае совпадают (табл. 2).

Московский государственный университет Поступило им. М. В. Ломоносова 17 1X 1971

Всесоюзный научно-исследовательский институт химических средств защиты растений

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ E. Steger, J. Rehak, H. Faltus, Zs. Phys. Chem., 229, 110 (1965).

² E. Steger, M. Kuntze, Spectrochim. acta, 23A, 2189 (1967).

³ T. Moritani, K. Kuchitsu, Y. Morino, Inorg. Chem., 10, 344 (1971).

⁴ B. A. Наумов, В. Н. Семашко, ЖСХ, 12, 317 (1971).