УДК 512.932

MATEMATHKA

А. Я. ХЕЛЕМСКИЙ

ЛОКАЛЬНО КОМПАКТНАЯ АБЕЛЕВА ГРУППА С ТРИВИАЛЬНЫМИ ДВУМЕРНЫМИ БАНАХОВЫМИ КОГОМОЛОГИЯМИ КОМПАКТНА

(Представлено академиком П. С. Александровым 29 Х 1971)

В работе (1) был предложен метод, позволяющий для любой бесконечномерной функциональной банаховой алгебры A находить банаховы A-модули, гомологическая размерность которых больше единицы. В настоящей заметке с помощью этого метода устанавливается утверждение, сформулированное в заглавии.

Пусть G — локально компактная тонологическая группа, $L^t(G)$ — ее групповая (банахова) алгебра. Под G ($L^t(G)$ -)-модулем или бимодулем мы будем подразумевать левый банахов модуль или банахов бимодуль над G ($L^t(G)$). Напомним, что G-бимодуль X является и $L^t(G)$ -бимодулем с операциями, определенными формулами $f \cdot x = \int\limits_G f(g) \, (g \cdot x) \, dg$

и $x \cdot f = \int\limits_G f(g) \, (x \cdot g) \, dg, \ f \in L^i(G), \ x \in X.$ В частности, G-модуль X, если его рассмотреть как бимодуль с тривиальным правым действием групны, может быть отождествлен со скалярным $L^i(G)$ -бимодулем, в котором правое внешнее умножение задано равенством $x \cdot f = \int\limits_G f(g) \, x dg$.

Используемые ниже понятия (относительно) проективного $L^1(G)$ -модуля, групп Ext и гомологической размерности $L^1(G)$ -модуля X (обозначение dh X) определены в (²). Через C будем обозначать комплексную плоскость, рассматриваемую как G-модуль с тривиальным действием; отметим, что для любого G-модуля X из леммы 6.1 (²) немедленно следует $\operatorname{Ext}^n(\mathbf{C},X) = H^n(L^1(G),X), \ n \geqslant 0$ (определение групп когомологий банаховых алгебр см., например, (³-5)).

Группы $\operatorname{Ext}^n(\mathbb{C},X)$ мы будем называть r руппами когомологий r руппы G с коэ ф фициентами в X и обозначать через $H^n(G,X)$. (Несколько отличное от приведенного определение когомологии локально компактных групп ранее предложил A. Гишарде (6); там же обсуждены условия, при которых введенные им когомологии групп выражаются через когомологии их групповых алгебр. Исходя из общей концепции «выражать всё через Ext » (ср. (7)), мы предпочли именно последние когомологии взять за основу.)

Теорема. Локально компактная абелева группа G компактна тогда u только тогда, когда $H^{2}(G,X)=0$ для любого банахова G-модуля X. Для компактной G $L^{1}(G)$ -модуль C, как легко усмотреть, проективен;

Для компактной G $L^1(G)$ -модуль C, как легко усмотреть, проективен; отсюда $\operatorname{Ext}^n(C,X)=0$ для любых n>0 и X. Тем самым необходимость установлена; вся оставшаяся часть работы посвящена доказательству достаточности.

Предположим, что G не компактна; тогда ее группа характеров \hat{G} не дискретна, и максимальный идеал $I=\{f\in L^1(G)\colon \int\limits_G f(g)\,dg=0\}$, соответствующий единичному характеру s_0 , не является изолированной точкой

в \hat{G} . Обозначим через $L_+^{-1}(G)$ результат присоединения к $L^1(G)$ единицы и через I_+ — максимальный идеал в $L_+^{-1}(G)$, соответствующий характеру s_0 . Для любой последовательности $s_n \in \hat{G}$ зададим в пространстве c_b всех ограниченных комплекснозначных последовательностей с равномерной нормой структуру $L^1(G)$ - модуля, положив для $a = \{a_n\} \in c_b \ f \cdot a = \{\hat{f}(s_n)a_n\}$, где \hat{f} — преобразование Фурье функции $f \in L^1(G)$. Тогда на основании основной теоремы работы (1) в ее уточненной формулировке (§ 9), рассмотренной для $A = I_+$, выполнено но крайней мере одно из следующих утверждений:

I) существует одномерный $L^{\iota}(G)$ -модуль X, такой, что $\operatorname{dh} X \geqslant 1$;

II) существует сходящаяся к s_0 последовательность $s_n \in \hat{G}$ такая, что для $L^1(G)$ -модуля $c_e = I_+ \underset{L^1(G)}{\otimes} c_b$ dh $c_e \geqslant 1$;

III) существует сходящаяся к s_0 последовательность $s_n \in \hat{G}$ такая, что для идеала $M = \{ f \in L^1(G) : \hat{f}(s_n) = 0 \}$ и фактор-модуля $B = I_+ / M$ $\operatorname{Ext}^2(c_b, B \otimes c_e) \neq 0$.

Покажем, что в случае, когда двумерные когомологии группы G тривиальны, ни одно из этих утверждений не может иметь места. Напомним (8), что для любого банахова пространства E проективное тензорное произведение $L^1(G) \otimes E$ изометрически изоморфно пространству $L_E^1(G)$ интегрируемых E-значных функций на G; в частности, $L^1(G) \otimes L^1(G) = L^1(G^2)$.

1) Лемма 1. $\hat{L}^{\scriptscriptstyle 1}(G)$ — проективный $L^{\scriptscriptstyle 1}(G)$ -модуль.

Пусть $\chi(g)$ — характеристическая функция некоторого подмножества меры Хаара 1 в G. Рассмотрим морфизм $L^1(G)$ -модулей ρ_0 : $L^1(G) \to L^1(G^2) = L^1(G) \otimes L^1(G)$ такой, что $\left[\rho_0(f)\right](g_1,g_2) = \chi(g_2)f(g_1g_2)$. Как легко видеть, композиция ρ_0 с каноническим морфизмом (2) тождественна на $L^1(G)$, а это означает проективность $L^1(G)$.

Для G-модуля X обозначим через π_X : $L_X^1(G) = L^1(G) \otimes X \to X$ морфизм, определенный формулой $\pi_X(\bar{f}) = \int\limits_G g \cdot \bar{f}(g) dg$, $\bar{f} \in L_X^1(G)$. Из оче-

видной связи π_x с каноническим морфизмом и леммы 1 немедленно следует

 Π е м м а 2. G-модуль X является проективным $L^1(G)$ -модулем тогда u только тогда, когда существует морфизм ρ_X $L^1(G)$ -модулей такой, что $\pi_X \rho_X = 1_X$.

Для характера $s \in G$ обозначим через I_s соответствующий максимальный идеал в $L^1(G)$, а через T_s —автоморфизм алгебры $L^1(G)$ такой, что $[T_s f](g) = s^{-1}(g) f(g)$, $f \in L^1(G)$; очевидно, T_s изометрически отображает I на I_s . Тем самым определен изометрический оператор $U_s = T_s \otimes T_s$: $L_I^1(G) = L^1(G) \otimes I \to L^1(G) \otimes I_s = L_{I_s^1}(G)$.

 \mathfrak{I} емма 3. Для любого $s \in \hat{G}$ идеал I_s проективен.

Ввиду С = $\dot{L}^1(G)/I$, тривиальность двумерных когомологий группы G означает, что I проективен; следовательно, существует $\rho = \rho_I$, обладающий свойством, указанным в предыдущей лемме. Но тогда, как легко видеть, $\rho_s = U_s \rho T_s^{-1}$: $I_s \to L_{I_8}^1(G)$ — морфизм $L^1(G)$ -модулем такой, что π_{I_8} $\rho_s = 1_{I_8}$. Согласно лемме 2, наше утверждение доказано.

Для всякого одномерного $L^1(G)$ -модуля X либо $X = L^1(G) / I_s$ для некоторого $s \in \hat{G}$, либо $X = L_+^1(G) / L^1(G)$. Поэтому из лемм 1 и 3 следует, что всегда dh $X \leq 1$, и утверждение (I) не имеет места.

II) Пусть $c_b - L^1(G)$ -модуль, построенный с помощью сходящейся к s_0 последовательности $s_n \in \hat{G}$; обозначим через c подмодуль в c_b , состоящий из последовательностей, сходящихся к нулю. Условимся писать далее I_n , T_n , U_n и ρ_n вместо I_{s^n} и т. п.

 Π емма 4. C точностью до изоморфизма $L^1(G)$ -модулей $c_e=c$.

Доказательство немедленно следует из наличия в I ограниченной аппроксимативной единице ((9), § 31) и леммы 8.5 работы (4).

Рассмотрим G-модуль $L_c^{-1}(G) = L^1(G) \otimes c$; его элементы суть последовательности $u = \{u_n\}, \quad u_n \in L^1(G), \quad \{u_n(g)\} \in c$ почти всюду такие, что $I = \int_G (\max_n |u_n(g)|) dg < \infty$. Пусть $J = \{u \in L_c^1(G) \colon u_n \in I\}$ и $K = \{u \in L_c^1(G) \colon u_n \in I_n\}$; очевидно, $J = I \otimes c$ и $K = \text{Ker } \pi_c$. Обозначим через $V: J \to K$ изометрический оператор, (корректно) определенный формулой $V\{u_n\} = \{T_n u_n\}.$

Теперь возьмем G-модуль $L^{_1}(G)\otimes L_{_{\mathrm{c}}}^{^{_1}}(G)=L_{_{\mathrm{c}}}^{^{_1}}(G^2)$ и рассмотрим его подмодули $L_{_J}^{^{_1}}(G)=L^{_1}(G)\otimes J$ и $L_{_K}^{^{_1}}(G)=L^{_1}(G)\otimes K$. Очевидно, $L_{_J}^{^{_1}}(G)$ состоит из последовательностей вида $v=\{v_n\},\,v_n\in L_I{}^{\scriptscriptstyle 1}(G)=L^{\scriptscriptstyle 1}(G)\otimes I\subset$ $\subset L^1(G)\otimes L^1(G)=L^1(G^2)$ и точно так же $L_{\kappa}^{-1}(G)$ — из последовательностей $w=\{w_n\},\ w_n\in L_{\mathfrak{l}^n}(G)$. Поэтому формула $W\{v_n\}=\{U_nv_n\}$ корректно определяет изометрический оператор $W: L_J^{-1}(G) \to L_K^{-1}(G)$.

 Π емма 5. $K-проективный <math>L^{\scriptscriptstyle 1}(G)$ -модуль.

. Физмы, введенные при доказательстве леммы 3), ρ_{κ} — морфизм $L^{i}(G)$ -модулей, причем, очевидно, $\pi_K \rho_K = 1_K$. Тем самым, согласно лемме 2, наше утверждение доказано.

Остается рассмотреть точную последовательность

$$0 \longrightarrow K \longrightarrow L^1_c(G) \xrightarrow{\pi_c} c \longrightarrow 0$$
.

Поскольку модули K и $L_{c}^{\ \ \ }(G) = L^{\ \ \ }(G) \otimes c$ проективны, а морфизм л., как легко видеть, допустим, она является допустимой проективной резольвентой $L^i(G)$ -модуля $c=c_e$ длины 1. Отсюда dh $c_e\leqslant 1$ и утверждение (II) не имеет места.

III) Для G-модулей X и Y пространство $\mathscr{B}(X,Y)$ всех ограниченных операторов из X в Y обладает, как известно, структурой G-бимодуля ${f c}$ действиями $[g \cdot \varphi](x) = g \cdot \varphi(x)$ и $[\varphi \cdot g](x) = \varphi(g \cdot x)$, $x \in X$, $g \in G$, $\varphi \in \mathcal{B}(X,Y)$. Введем в $\mathcal{B}(X,Y)$ новое левое действие группы, положив $g \circ \phi = g \cdot \phi \cdot g^{-1}$ (ср. (10) и (5)); полученный G-модуль обозначен через $\mathscr{B}(X,Y)^{\circ}$.

 Π е м м а 6. C точностью $=H^n(G,\mathcal{B}(X,Y)^0), n=0,1,2,...$ до изоморфизма $\operatorname{Ext}^n(X,Y) =$

Поскольку $\operatorname{Ext}^n(X,Y) = H^n(L^1(G),\mathcal{B}(X,Y))$ ((2), лемма 6.1), а пространства коцепей стандартного комплекса для вычислений последних когомологий суть $\mathscr{B}(L^{1}(G^{n}),\mathscr{B}(X,Y))=\mathscr{B}(L^{1}(G^{n})\otimes X,Y)=\mathscr{B}(L_{X}^{1}(G^{n}),Y)$ («сопряженная ассоциативность»), группы $\operatorname{Ext}^n(X,Y)$ могут быть вычислены как когомологии комплекса

$$0 \to \mathcal{B}(X, Y) \stackrel{\delta_0}{\to} \mathcal{B}(L_X^1(G), Y) \stackrel{\delta_1}{\to} \mathcal{B}(L_X^1(G^2), Y) \to \dots$$

с кограничными операторами, определенными с помощью формул

$$[\delta_n \psi] (u) = \int_G g \cdot [\psi (u (g, g_1, \ldots, g_n))] dg + \sum_{K=1}^n (-1)^k \int_G \psi (u (g_1, \ldots, g_n, g_n)) dg + (-1)^{n+1} \int_G \psi (g \cdot u (g_1, \ldots, g_n, g)) dg,$$

где $u \in L_{X}^{1}(G^{n+1})$ и $\psi \in \mathscr{B}(L_{X}^{1}(G^{n}), Y), n = 0, 1, \dots$ Аналогично, группы $H^{n}(G, \mathscr{B}(X, Y)^{0}) = \operatorname{Ext}^{n}(C, \mathscr{B}(X, Y)^{0})$ могут быть вычислены как когомологии комплекса, состоящего из тех же коцепей, однако с другими кограничными операторами δ_n^0 ; $n=0,1,\ldots$, определенными формулами

$$\begin{aligned} [\delta_n^0 \psi] (u) &= \int_G g \cdot [\psi (g^{-1} \cdot u (g, g_1, \dots, g_n))] dg + \\ &+ \sum_{K=1}^n (-1)^k \int_G \psi (u (g_1, \dots, g, g^{-1} g_k, \dots, g_n)) dg + \\ &+ (-1)^{n+1} \int_G \psi (u (g_1, \dots, g_n, g)) dg. \end{aligned}$$

Сопоставим каждому $\psi \in \mathcal{B}(L_x^{-1}(G^n), Y)$ элемент $\varkappa_n(\psi)$ того же пространства, определенный равенством $[\varkappa_n(\psi)](u) = \psi[(g_1 \dots g_n)^{-1}u(g_1, \dots, g_n)]$; очевидно, \varkappa_n — изоморфизм линейных пространств, причем, как нетрудно проверить, $\varkappa_n\delta_n = \delta_n^{\ 0}\varkappa_{n-1}, \ n=0,1,\dots$ Таким образом, семейство $\varkappa = \{\varkappa_n\}$ является изоморфизмом обоих комплексов; следовательно, их когомологии совпадают. Лемма доказана.

Как легко видеть, для последовательности s_n , заключенной внутри некоторого компакта в \hat{G} , $L^1(G)$ -модули c_b и $B\otimes c_e$ суть также и G-модули. Отсюда на основании предыдущей леммы $\operatorname{Ext}^2(c_b, B\otimes c_e)=0$ и утверждение (III) не имеет места.

Конец доказательства. Итак, для группы с тривиальными двумерными когомологиями ни одно из утверждений (I) — (III) не имеет места; в то же время для некомпактной группы хотя бы одно из них выполнено. Тем самым достаточность установлена, и теорема полностью доказана.

Механико-математический факультет Московского государственного университета им. М. В. Ломоносова Поступило 29 X 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. Я. Хелемский, Сборн. тр. каф. теор. функц. и функц. анал. МГУ. 1, 1972. ² А. Я. Хелемский, Матем. сборн., 83 (125), № 2 (10) (1970). ³ Н. Ка-mowitz, Trans. Am. Math. Soc., 102, № 2 (1962). ⁴ А. Guichardet, С. R., 262, A38 (1966). ⁵ В. Е. Johnson, Cohomology in Banach Algebras, 1970, Preprint. ⁶ А. Guichardet, С. R., 262, A118 (1966). ⁷ А. Картан, С. Эйленберг, Гомологическая алгебра, М., 1960. ⁸ А. Grothendieck, Мет. Ат. Маth. Soc., 16 (1955). ⁹ М. А. Наймарк, Нормированные кольца, М., 1968. ¹⁰ С. Маклейн, Гомология, М., 1966.